Logo Search packages:      
Sourcecode: rsymphony version File versions  Download package

ClpSolve.cpp

/* $Id: ClpSolve.cpp 1458 2009-11-05 12:34:07Z forrest $ */
// Copyright (C) 2003, International Business Machines
// Corporation and others.  All Rights Reserved.

// This file has higher level solve functions

#include "ClpConfig.h"
#include "CoinPragma.hpp"

#include <math.h>

#include "CoinHelperFunctions.hpp"
#include "ClpHelperFunctions.hpp"
#include "CoinSort.hpp"
#include "ClpFactorization.hpp"
#include "ClpSimplex.hpp"
#include "ClpSimplexOther.hpp"
#include "ClpSimplexDual.hpp"
#ifndef SLIM_CLP
#include "ClpQuadraticObjective.hpp"
#include "ClpInterior.hpp"
#include "ClpCholeskyDense.hpp"
#include "ClpCholeskyBase.hpp"
#include "ClpPlusMinusOneMatrix.hpp"
#include "ClpNetworkMatrix.hpp"
#endif
#include "ClpLinearObjective.hpp"
#include "ClpSolve.hpp"
#include "ClpPackedMatrix.hpp"
#include "ClpMessage.hpp"
#include "CoinTime.hpp"

#include "ClpPresolve.hpp"
#ifndef SLIM_CLP
#include "Idiot.hpp"
#ifdef WSSMP_BARRIER
#include "ClpCholeskyWssmp.hpp"
#include "ClpCholeskyWssmpKKT.hpp"
#endif
#ifdef UFL_BARRIER
#include "ClpCholeskyUfl.hpp"
#endif
#ifdef TAUCS_BARRIER
#include "ClpCholeskyTaucs.hpp"
#endif
#ifdef MUMPS_BARRIER
#include "ClpCholeskyMumps.hpp"
#endif
#ifdef COIN_HAS_VOL
#include "VolVolume.hpp"
#include "CoinHelperFunctions.hpp"
#include "CoinPackedMatrix.hpp"
#include "CoinMpsIO.hpp"

//#############################################################################

class lpHook : public VOL_user_hooks {
private:
   lpHook(const lpHook&);
   lpHook& operator=(const lpHook&);
private:
   /// Pointer to dense vector of structural variable upper bounds
   double  *colupper_;
   /// Pointer to dense vector of structural variable lower bounds
   double  *collower_;
   /// Pointer to dense vector of objective coefficients
   double  *objcoeffs_;
   /// Pointer to dense vector of right hand sides
   double  *rhs_;
   /// Pointer to dense vector of senses
   char    *sense_;

   /// The problem matrix in a row ordered form
   CoinPackedMatrix rowMatrix_;
   /// The problem matrix in a column ordered form
   CoinPackedMatrix colMatrix_;

public:
   lpHook(double* clb, double* cub, double* obj,
        double* rhs, char* sense, const CoinPackedMatrix& mat);
   virtual ~lpHook();
   
public:
   // for all hooks: return value of -1 means that volume should quit
   /** compute reduced costs    
       @param u (IN) the dual variables
       @param rc (OUT) the reduced cost with respect to the dual values
   */
   virtual int compute_rc(const VOL_dvector& u, VOL_dvector& rc);

   /** Solve the subproblem for the subgradient step.
       @param dual (IN) the dual variables
       @param rc (IN) the reduced cost with respect to the dual values
       @param lcost (OUT) the lagrangean cost with respect to the dual values
       @param x (OUT) the primal result of solving the subproblem
       @param v (OUT) b-Ax for the relaxed constraints
       @param pcost (OUT) the primal objective value of <code>x</code>
   */
   virtual int solve_subproblem(const VOL_dvector& dual, const VOL_dvector& rc,
                        double& lcost, VOL_dvector& x, VOL_dvector& v,
                        double& pcost);
   /** Starting from the primal vector x, run a heuristic to produce
       an integer solution  
       @param x (IN) the primal vector
       @param heur_val (OUT) the value of the integer solution (return 
       <code>DBL_MAX</code> here if no feas sol was found 
   */
   virtual int heuristics(const VOL_problem& p, 
                    const VOL_dvector& x, double& heur_val) {
      return 0;
   }
};
 
//#############################################################################

lpHook::lpHook(double* clb, double* cub, double* obj,
             double* rhs, char* sense,
             const CoinPackedMatrix& mat)
{
   colupper_ = cub;
   collower_ = clb;
   objcoeffs_ = obj;
   rhs_ = rhs;
   sense_ = sense;
   assert (mat.isColOrdered());
   colMatrix_.copyOf(mat);
   rowMatrix_.reverseOrderedCopyOf(mat);
}

//-----------------------------------------------------------------------------

lpHook::~lpHook()
{
}

//#############################################################################

int
lpHook::compute_rc(const VOL_dvector& u, VOL_dvector& rc)
{
   rowMatrix_.transposeTimes(u.v, rc.v);
   const int psize = rowMatrix_.getNumCols();

   for (int i = 0; i < psize; ++i)
      rc[i] = objcoeffs_[i] - rc[i];
   return 0;
}

//-----------------------------------------------------------------------------

int
lpHook::solve_subproblem(const VOL_dvector& dual, const VOL_dvector& rc,
                   double& lcost, VOL_dvector& x, VOL_dvector& v,
                   double& pcost)
{
   int i;
   const int psize = x.size();
   const int dsize = v.size();

   // compute the lagrangean solution corresponding to the reduced costs
   for (i = 0; i < psize; ++i) 
      x[i] = (rc[i] >= 0.0) ? collower_[i] : colupper_[i];

   // compute the lagrangean value (rhs*dual + primal*rc)
   lcost = 0;
   for (i = 0; i < dsize; ++i)
      lcost += rhs_[i] * dual[i];
   for (i = 0; i < psize; ++i)
      lcost += x[i] * rc[i];

   // compute the rhs - lhs 
   colMatrix_.times(x.v, v.v);
   for (i = 0; i < dsize; ++i)
      v[i] = rhs_[i] - v[i];

   // compute the lagrangean primal objective
   pcost = 0;
   for (i = 0; i < psize; ++i)
      pcost += x[i] * objcoeffs_[i];

   return 0;
}

//#############################################################################
/** A quick inlined function to convert from lb/ub style constraint
    definition to sense/rhs/range style */
inline void
convertBoundToSense(const double lower, const double upper,
                              char& sense, double& right,
                              double& range) 
{
  range = 0.0;
  if (lower > -1.0e20) {
    if (upper < 1.0e20) {
      right = upper;
      if (upper==lower) {
        sense = 'E';
      } else {
        sense = 'R';
        range = upper - lower;
      }
    } else {
      sense = 'G';
      right = lower;
    }
  } else {
    if (upper < 1.0e20) {
      sense = 'L';
      right = upper;
    } else {
      sense = 'N';
      right = 0.0;
    }
  }
}

static int
solveWithVolume(ClpSimplex * model, int numberPasses, int doIdiot)
{
   VOL_problem volprob;
   volprob.parm.gap_rel_precision=0.00001;
   volprob.parm.maxsgriters=3000;
   if(numberPasses>3000) {
     volprob.parm.maxsgriters=numberPasses;
     volprob.parm.primal_abs_precision=0.0;
     volprob.parm.minimum_rel_ascent=0.00001;
   } else if (doIdiot>0) {
     volprob.parm.maxsgriters=doIdiot;
   }
   if (model->logLevel()<2) 
     volprob.parm.printflag=0;
   else
     volprob.parm.printflag=3;
   const CoinPackedMatrix* mat = model->matrix();
   int psize = model->numberColumns();
   int dsize = model->numberRows();
   char * sense = new char[dsize];
   double * rhs = new double [dsize];

   // Set the lb/ub on the duals
   volprob.dsize = dsize;
   volprob.psize = psize;
   volprob.dual_lb.allocate(dsize);
   volprob.dual_ub.allocate(dsize);
   int i;
   const double * rowLower = model->rowLower();
   const double * rowUpper = model->rowUpper();
   for (i = 0; i < dsize; ++i) {
     double range;
     convertBoundToSense(rowLower[i],rowUpper[i],
                         sense[i],rhs[i],range);
      switch (sense[i]) {
       case 'E':
       volprob.dual_lb[i] = -1.0e31;
       volprob.dual_ub[i] = 1.0e31;
       break;
       case 'L':
       volprob.dual_lb[i] = -1.0e31;
       volprob.dual_ub[i] = 0.0;
       break;
       case 'G':
       volprob.dual_lb[i] = 0.0;
       volprob.dual_ub[i] = 1.0e31;
       break;
       default:
       printf("Volume Algorithm can't work if there is a non ELG row\n");
       return 1;
      }
   }
   // Check bounds
   double * saveLower = model->columnLower();
   double * saveUpper = model->columnUpper();
   bool good=true;
   for (i=0;i<psize;i++) {
     if (saveLower[i]<-1.0e20||saveUpper[i]>1.0e20) {
       good=false;
       break;
     }
   }
   if (!good) {
     saveLower = CoinCopyOfArray(model->columnLower(),psize);
     saveUpper = CoinCopyOfArray(model->columnUpper(),psize);
     for (i=0;i<psize;i++) {
       if (saveLower[i]<-1.0e20)
         saveLower[i]=-1.0e20;
       if(saveUpper[i]>1.0e20) 
         saveUpper[i]=1.0e20;
     }
   }
   lpHook myHook(saveLower, saveUpper,
             model->objective(),
             rhs, sense, *mat);

   volprob.solve(myHook, false /* no warmstart */);

   if (saveLower!=model->columnLower()) {
     delete [] saveLower;
     delete [] saveUpper;
   }
   //------------- extract the solution ---------------------------

   //printf("Best lagrangean value: %f\n", volprob.value);

   double avg = 0;
   for (i = 0; i < dsize; ++i) {
      switch (sense[i]) {
       case 'E':
       avg += CoinAbs(volprob.viol[i]);
       break;
       case 'L':
       if (volprob.viol[i] < 0)
          avg +=  (-volprob.viol[i]);
       break;
       case 'G':
       if (volprob.viol[i] > 0)
          avg +=  volprob.viol[i];
       break;
      }
   }
      
   //printf("Average primal constraint violation: %f\n", avg/dsize);

   // volprob.dsol contains the dual solution (dual feasible)
   // volprob.psol contains the primal solution
   //              (NOT necessarily primal feasible)
   CoinMemcpyN(volprob.dsol.v,dsize,model->dualRowSolution());
   CoinMemcpyN(volprob.psol.v,psize,model->primalColumnSolution());
   return 0;
}
#endif
static ClpInterior * currentModel2 = NULL;
#endif
//#############################################################################
// Allow for interrupts
// But is this threadsafe ? (so switched off by option)

#include "CoinSignal.hpp"
static ClpSimplex * currentModel = NULL;

extern "C" {
   static void 
#if defined(_MSC_VER)
   __cdecl
#endif // _MSC_VER
   signal_handler(int /*whichSignal*/)
   {
      if (currentModel!=NULL) 
       currentModel->setMaximumIterations(0); // stop at next iterations
#ifndef SLIM_CLP
      if (currentModel2!=NULL) 
       currentModel2->setMaximumBarrierIterations(0); // stop at next iterations
#endif
      return;
   }
}

/** General solve algorithm which can do presolve
    special options (bits)
    1 - do not perturb
    2 - do not scale
    4 - use crash (default allslack in dual, idiot in primal)
    8 - all slack basis in primal
    16 - switch off interrupt handling
    32 - do not try and make plus minus one matrix
    64 - do not use sprint even if problem looks good
 */
int 
00368 ClpSimplex::initialSolve(ClpSolve & options)
{
  ClpSolve::SolveType method=options.getSolveType();
  //ClpSolve::SolveType originalMethod=method;
  ClpSolve::PresolveType presolve = options.getPresolveType();
  int saveMaxIterations = maximumIterations();
  int finalStatus=-1;
  int numberIterations=0;
  double time1 = CoinCpuTime();
  double timeX = time1;
  double time2;
  ClpMatrixBase * saveMatrix=NULL;
  ClpObjective * savedObjective=NULL;
  if (!objective_||!matrix_) {
    // totally empty
    handler_->message(CLP_EMPTY_PROBLEM,messages_)
      <<0
      <<0
      <<0
      <<CoinMessageEol;
    return -1;
  } else if (!numberRows_||!numberColumns_||!getNumElements()) {
    presolve = ClpSolve::presolveOff;
  }
  if (objective_->type()>=2&&optimizationDirection_==0) {
    // pretend linear
    savedObjective=objective_;
    // make up objective
    double * obj = new double[numberColumns_];
    for (int i=0;i<numberColumns_;i++) {
      double l = fabs(columnLower_[i]);
      double u = fabs(columnUpper_[i]);
      obj[i]=0.0;
      if (CoinMin(l,u)<1.0e20) {
        if (l<u) 
          obj[i]=1.0+randomNumberGenerator_.randomDouble()*1.0e-2;
        else
          obj[i]=-1.0-randomNumberGenerator_.randomDouble()*1.0e-2;
      }
    }
    objective_= new ClpLinearObjective(obj,numberColumns_);
    delete [] obj;
  }
  ClpSimplex * model2 = this;
  bool interrupt = (options.getSpecialOption(2)==0);
  CoinSighandler_t saveSignal=static_cast<CoinSighandler_t> (0);
  if (interrupt) {
    currentModel = model2;
    // register signal handler
    saveSignal = signal(SIGINT,signal_handler);
  }
  // If no status array - set up basis
  if (!status_)
    allSlackBasis();
  ClpPresolve pinfo;
  pinfo.setSubstitution(options.substitution());
  int presolveOptions = options.presolveActions();
  bool presolveToFile = (presolveOptions&0x40000000)!=0;
  presolveOptions &= ~0x40000000;
  if ((presolveOptions&0xffff)!=0)
    pinfo.setPresolveActions(presolveOptions);
  // switch off singletons to slacks
  //pinfo.setDoSingletonColumn(false); // done by bits
  int printOptions = options.getSpecialOption(5);
  if ((printOptions&1)!=0)
    pinfo.statistics();
  double timePresolve=0.0;
  double timeIdiot=0.0;
  double timeCore=0.0;
  int savePerturbation=perturbation_;
  int saveScaling = scalingFlag_;
#ifndef SLIM_CLP
#ifndef NO_RTTI
  if (dynamic_cast< ClpNetworkMatrix*>(matrix_)) {
    // network - switch off stuff
    presolve = ClpSolve::presolveOff;
  }
#else
  if (matrix_->type()==11) {
    // network - switch off stuff
    presolve = ClpSolve::presolveOff;
  }
#endif
#endif
  if (presolve!=ClpSolve::presolveOff) {
    bool costedSlacks=false;
    int numberPasses=5;
    if (presolve==ClpSolve::presolveNumber) {
      numberPasses=options.getPresolvePasses();
      presolve = ClpSolve::presolveOn;
    } else if (presolve==ClpSolve::presolveNumberCost) {
      numberPasses=options.getPresolvePasses();
      presolve = ClpSolve::presolveOn;
      costedSlacks=true;
      // switch on singletons to slacks
      pinfo.setDoSingletonColumn(true);
      // gub stuff for testing
      //pinfo.setDoGubrow(true);
    }
#ifndef CLP_NO_STD
    if (presolveToFile) {
      // PreSolve to file - not fully tested
      printf("Presolving to file - presolve.save\n");
      pinfo.presolvedModelToFile(*this,"presolve.save",dblParam_[ClpPresolveTolerance],
                     false,numberPasses);
      model2=this;
    } else {
#endif
      model2 = pinfo.presolvedModel(*this,dblParam_[ClpPresolveTolerance],
                            false,numberPasses,true,costedSlacks);
#ifndef CLP_NO_STD
    }
#endif
    time2 = CoinCpuTime();
    timePresolve = time2-timeX;
    handler_->message(CLP_INTERVAL_TIMING,messages_)
      <<"Presolve"<<timePresolve<<time2-time1
      <<CoinMessageEol;
    timeX=time2;
    if (!model2) {
      handler_->message(CLP_INFEASIBLE,messages_)
      <<CoinMessageEol;
      model2 = this;
      problemStatus_=1; // may be unbounded but who cares
      if (options.infeasibleReturn()||(moreSpecialOptions_&1)!=0) {
        return -1;
      }
      presolve=ClpSolve::presolveOff;
    }
    // We may be better off using original (but if dual leave because of bounds)
    if (presolve!=ClpSolve::presolveOff&&
      numberRows_<1.01*model2->numberRows_&&numberColumns_<1.01*model2->numberColumns_
      &&model2!=this) {
      if(method!=ClpSolve::useDual||
       (numberRows_==model2->numberRows_&&numberColumns_==model2->numberColumns_)) {
      delete model2;
      model2 = this;
      presolve=ClpSolve::presolveOff;
      }
    }
  }
  if (interrupt)
    currentModel = model2;
  // For below >0 overrides
  // 0 means no, -1 means maybe
  int doIdiot=0;
  int doCrash=0;
  int doSprint=0;
  int doSlp=0;
  int primalStartup=1;
  bool tryItSave = false;
  // switch to primal from automatic if just one cost entry
  if (method==ClpSolve::automatic&&model2->numberColumns()>5000&&
      (specialOptions_&1024)!=0) {
    int numberColumns = model2->numberColumns();
    int numberRows = model2->numberRows();
    const double * obj = model2->objective();
    int nNon=0;
    for (int i=0;i<numberColumns;i++) {
      if (obj[i])
      nNon++;
    }
    if (nNon==1) {
#ifdef COIN_DEVELOP
      printf("Forcing primal\n");
#endif
      method=ClpSolve::usePrimal;
      tryItSave= numberRows>200&&numberColumns>2000&&
      (numberColumns>2*numberRows||(specialOptions_&1024)!=0);
    }
  }
  if (method!=ClpSolve::useDual&&method!=ClpSolve::useBarrier
      &&method!=ClpSolve::useBarrierNoCross) {
    switch (options.getSpecialOption(1)) {
    case 0:
      doIdiot=-1;
      doCrash=-1;
      doSprint=-1;
      break;
    case 1:
      doIdiot=0;
      doCrash=1;
      if (options.getExtraInfo(1)>0)
      doCrash = options.getExtraInfo(1);
      doSprint=0;
      break;
    case 2:
      doIdiot=1;
      if (options.getExtraInfo(1)>0)
      doIdiot = options.getExtraInfo(1);
      doCrash=0;
      doSprint=0;
      break;
    case 3:
      doIdiot=0;
      doCrash=0;
      doSprint=1;
      break;
    case 4:
      doIdiot=0;
      doCrash=0;
      doSprint=0;
      break;
    case 5:
      doIdiot=0;
      doCrash=-1;
      doSprint=-1;
      break;
    case 6:
      doIdiot=-1;
      doCrash=-1;
      doSprint=0;
      break;
    case 7:
      doIdiot=-1;
      doCrash=0;
      doSprint=-1;
      break;
    case 8:
      doIdiot=-1;
      doCrash=0;
      doSprint=0;
      break;
    case 9:
      doIdiot=0;
      doCrash=0;
      doSprint=-1;
      break;
    case 10:
      doIdiot=0;
      doCrash=0;
      doSprint=0;
      if (options.getExtraInfo(1)>0)
      doSlp = options.getExtraInfo(1);
      break;
    case 11:
      doIdiot=0;
      doCrash=0;
      doSprint=0;
      primalStartup=0;
      break;
    default:
      abort();
    }
  } else {
    // Dual
    switch (options.getSpecialOption(0)) {
    case 0:
      doIdiot=0;
      doCrash=0;
      doSprint=0;
      break;
    case 1:
      doIdiot=0;
      doCrash=1;
      if (options.getExtraInfo(0)>0)
      doCrash = options.getExtraInfo(0);
      doSprint=0;
      break;
    case 2:
      doIdiot=-1;
      if (options.getExtraInfo(0)>0)
      doIdiot = options.getExtraInfo(0);
      doCrash=0;
      doSprint=0;
      break;
    default:
      abort();
    }
  }
#ifndef NO_RTTI
  ClpQuadraticObjective * quadraticObj = (dynamic_cast< ClpQuadraticObjective*>(objectiveAsObject()));
#else
  ClpQuadraticObjective * quadraticObj = NULL;
  if (objective_->type()==2)
    quadraticObj = (static_cast< ClpQuadraticObjective*>(objective_));
#endif
  // If quadratic then primal or barrier or slp
  if (quadraticObj) {
    doSprint=0;
    doIdiot=0;
    // off
    if (method==ClpSolve::useBarrier)
      method=ClpSolve::useBarrierNoCross;
    else if (method!=ClpSolve::useBarrierNoCross)
      method=ClpSolve::usePrimal;
  }
#ifdef COIN_HAS_VOL
  // Save number of idiot
  int saveDoIdiot=doIdiot;
#endif
  // Just do this number of passes in Sprint
  int maxSprintPass=100;
  // See if worth trying +- one matrix
  bool plusMinus=false;
  int numberElements=model2->getNumElements();
#ifndef SLIM_CLP
#ifndef NO_RTTI
  if (dynamic_cast< ClpNetworkMatrix*>(matrix_)) {
    // network - switch off stuff
    doIdiot=0;
    if (doSprint<0)
      doSprint=0;
  }
#else
  if (matrix_->type()==11) {
    // network - switch off stuff
    doIdiot=0;
    //doSprint=0;
  }
#endif
#endif
  int numberColumns = model2->numberColumns();
  int numberRows = model2->numberRows();
  // If not all slack basis - switch off all except sprint
  int numberRowsBasic=0;
  int iRow;
  for (iRow=0;iRow<numberRows;iRow++)
    if (model2->getRowStatus(iRow)==basic)
      numberRowsBasic++;
  if (numberRowsBasic<numberRows) {
    doIdiot=0;
    doCrash=0;
    //doSprint=0;
  }
  if (options.getSpecialOption(3)==0) {
    if(numberElements>100000)
      plusMinus=true;
    if(numberElements>10000&&(doIdiot||doSprint)) 
      plusMinus=true;
  } else if ((specialOptions_&1024)!=0) {
    plusMinus=true;
  }
#ifndef SLIM_CLP
  // Statistics (+1,-1, other) - used to decide on strategy if not +-1
  CoinBigIndex statistics[3]={-1,0,0};
  if (plusMinus) {
    saveMatrix = model2->clpMatrix();
#ifndef NO_RTTI
    ClpPackedMatrix* clpMatrix =
      dynamic_cast< ClpPackedMatrix*>(saveMatrix);
#else
    ClpPackedMatrix* clpMatrix = NULL;
    if (saveMatrix->type()==1)
      clpMatrix =
      static_cast< ClpPackedMatrix*>(saveMatrix);
#endif
    if (clpMatrix) {
      ClpPlusMinusOneMatrix * newMatrix = new ClpPlusMinusOneMatrix(*(clpMatrix->matrix()));
      if (newMatrix->getIndices()) {
      if ((specialOptions_&1024)==0) {
        model2->replaceMatrix(newMatrix);
      } else {
        // in integer - just use for sprint/idiot
        saveMatrix=NULL;
        delete newMatrix;
      }
      } else {
      handler_->message(CLP_MATRIX_CHANGE,messages_)
        <<"+- 1"
        <<CoinMessageEol;
        CoinMemcpyN(newMatrix->startPositive(),3,statistics);
      saveMatrix=NULL;
      plusMinus=false;
      delete newMatrix;
      }
    } else {
      saveMatrix=NULL;
      plusMinus=false;
    }
  }
#endif
  if (this->factorizationFrequency()==200) {
    // User did not touch preset
    model2->defaultFactorizationFrequency();
  } else if (model2!=this) {
    // make sure model2 has correct value
    model2->setFactorizationFrequency(this->factorizationFrequency());
  }
  if (method==ClpSolve::automatic) {
    if (doSprint==0&&doIdiot==0) {
      // off
      method=ClpSolve::useDual;
    } else {
      // only do primal if sprint or idiot
      if (doSprint>0) {
        method=ClpSolve::usePrimalorSprint;
      } else if (doIdiot>0) {
        method=ClpSolve::usePrimal;
      } else {
        if (numberElements<500000) {
          // Small problem
          if(numberRows*10>numberColumns||numberColumns<6000
             ||(numberRows*20>numberColumns&&!plusMinus))
            doSprint=0; // switch off sprint
        } else {
          // larger problem
          if(numberRows*8>numberColumns)
            doSprint=0; // switch off sprint
        }
        // switch off sprint or idiot if any free variable
      int iColumn;
      double * columnLower = model2->columnLower();
      double * columnUpper = model2->columnUpper();
      for (iColumn=0;iColumn<numberColumns;iColumn++) {
          if (columnLower[iColumn]<-1.0e10&&columnUpper[iColumn]>1.0e10) {
            doSprint=0;
            doIdiot=0;
            break;
          }
        }
        int nPasses=0;
        // look at rhs
        int iRow;
        double largest=0.0;
        double smallest = 1.0e30;
        double largestGap=0.0;
        int numberNotE=0;
        bool notInteger=false;
        for (iRow=0;iRow<numberRows;iRow++) {
          double value1 = model2->rowLower_[iRow];
          if (value1&&value1>-1.0e31) {
            largest = CoinMax(largest,fabs(value1));
            smallest=CoinMin(smallest,fabs(value1));
            if (fabs(value1-floor(value1+0.5))>1.0e-8) {
              notInteger=true;
              break;
            }
          }
          double value2 = model2->rowUpper_[iRow];
          if (value2&&value2<1.0e31) {
            largest = CoinMax(largest,fabs(value2));
            smallest=CoinMin(smallest,fabs(value2));
            if (fabs(value2-floor(value2+0.5))>1.0e-8) {
              notInteger=true;
              break;
            }
          }
          if (value2>value1) {
            numberNotE++;
            if (value2>1.0e31||value1<-1.0e31)
              largestGap = COIN_DBL_MAX;
            else
              largestGap = value2-value1;
          }
        }
        bool tryIt= numberRows>200&&numberColumns>2000&&
        (numberColumns>2*numberRows||(method!=ClpSolve::useDual&&(specialOptions_&1024)!=0));
      tryItSave = tryIt;
        if (numberRows<1000&&numberColumns<3000)
          tryIt=false;
        if (notInteger)
          tryIt=false;
        if (largest/smallest>10||(largest/smallest>2.0&&largest>50))
          tryIt=false;
        if (tryIt) {
          if (largest/smallest>2.0) {
            nPasses = 10+numberColumns/100000;
            nPasses = CoinMin(nPasses,50);
            nPasses = CoinMax(nPasses,15);
            if (numberRows>20000&&nPasses>5) {
              // Might as well go for it
              nPasses = CoinMax(nPasses,71);
            } else if (numberRows>2000&&nPasses>5) {
              nPasses = CoinMax(nPasses,50);
            } else if (numberElements<3*numberColumns) {
              nPasses=CoinMin(nPasses,10); // probably not worh it
            }
          } else if (largest/smallest>1.01||numberElements<=3*numberColumns) {
            nPasses = 10+numberColumns/1000;
            nPasses = CoinMin(nPasses,100);
            nPasses = CoinMax(nPasses,30);
            if (numberRows>25000) {
              // Might as well go for it
              nPasses = CoinMax(nPasses,71);
            }
            if (!largestGap)
              nPasses *= 2;
          } else {
            nPasses = 10+numberColumns/1000;
            nPasses = CoinMin(nPasses,200);
            nPasses = CoinMax(nPasses,100);
            if (!largestGap)
              nPasses *= 2;
          }
        }
        //printf("%d rows %d cols plus %c tryIt %c largest %g smallest %g largestGap %g npasses %d sprint %c\n",
        //     numberRows,numberColumns,plusMinus ? 'Y' : 'N',
        //     tryIt ? 'Y' :'N',largest,smallest,largestGap,nPasses,doSprint ? 'Y' :'N');
        //exit(0);
        if (!tryIt||nPasses<=5)
          doIdiot=0;
        if (doSprint) {
          method = ClpSolve::usePrimalorSprint;
        } else if (doIdiot) {
          method = ClpSolve::usePrimal;
        } else {
          method = ClpSolve::useDual;
        }
      }
    }
  }
  if (method==ClpSolve::usePrimalorSprint) {
    if (doSprint<0) { 
      if (numberElements<500000) {
      // Small problem
      if(numberRows*10>numberColumns||numberColumns<6000
         ||(numberRows*20>numberColumns&&!plusMinus))
        method=ClpSolve::usePrimal; // switch off sprint
      } else {
      // larger problem
      if(numberRows*8>numberColumns)
        method=ClpSolve::usePrimal; // switch off sprint
      // but make lightweight
      if(numberRows*10>numberColumns||numberColumns<6000
         ||(numberRows*20>numberColumns&&!plusMinus))
        maxSprintPass=10;
      }
    } else if (doSprint==0) {
      method=ClpSolve::usePrimal; // switch off sprint
    }
  }
  if (method==ClpSolve::useDual) {
    double * saveLower=NULL;
    double * saveUpper=NULL;
    if (presolve==ClpSolve::presolveOn) {
      int numberInfeasibilities = model2->tightenPrimalBounds(0.0,0);
      if (numberInfeasibilities) {
      handler_->message(CLP_INFEASIBLE,messages_)
        <<CoinMessageEol;
      delete model2;
      model2 = this;
      presolve=ClpSolve::presolveOff;
      }
    } else if (numberRows_+numberColumns_>5000) {
      // do anyway
      saveLower = new double[numberRows_+numberColumns_];
      CoinMemcpyN(model2->columnLower(),numberColumns_,saveLower);
      CoinMemcpyN(model2->rowLower(),numberRows_,saveLower+numberColumns_);
      saveUpper = new double[numberRows_+numberColumns_];
      CoinMemcpyN(model2->columnUpper(),numberColumns_,saveUpper);
      CoinMemcpyN(model2->rowUpper(),numberRows_,saveUpper+numberColumns_);
      int numberInfeasibilities = model2->tightenPrimalBounds();
      if (numberInfeasibilities) {
      handler_->message(CLP_INFEASIBLE,messages_)
        <<CoinMessageEol;
        CoinMemcpyN(saveLower,numberColumns_,model2->columnLower());
        CoinMemcpyN(saveLower+numberColumns_,numberRows_,model2->rowLower());
        delete [] saveLower;
        saveLower=NULL;
        CoinMemcpyN(saveUpper,numberColumns_,model2->columnUpper());
        CoinMemcpyN(saveUpper+numberColumns_,numberRows_,model2->rowUpper());
        delete [] saveUpper;
        saveUpper=NULL;
      }
    }
#ifndef COIN_HAS_VOL
    // switch off idiot and volume for now 
    doIdiot=0; 
#endif
    // pick up number passes
    int nPasses=0;
    int numberNotE=0;
#ifndef SLIM_CLP
    if ((doIdiot<0&&plusMinus)||doIdiot>0) {
      // See if candidate for idiot
      nPasses=0;
      Idiot info(*model2);
      // Get average number of elements per column
      double ratio  = static_cast<double> (numberElements)/static_cast<double> (numberColumns);
      // look at rhs
      int iRow;
      double largest=0.0;
      double smallest = 1.0e30;
      double largestGap=0.0;
      for (iRow=0;iRow<numberRows;iRow++) {
      double value1 = model2->rowLower_[iRow];
      if (value1&&value1>-1.0e31) {
        largest = CoinMax(largest,fabs(value1));
        smallest=CoinMin(smallest,fabs(value1));
      }
      double value2 = model2->rowUpper_[iRow];
      if (value2&&value2<1.0e31) {
        largest = CoinMax(largest,fabs(value2));
        smallest=CoinMin(smallest,fabs(value2));
      }
      if (value2>value1) {
        numberNotE++;
        if (value2>1.0e31||value1<-1.0e31)
          largestGap = COIN_DBL_MAX;
        else
          largestGap = value2-value1;
      }
      }
      if (doIdiot<0) {
      if (numberRows>200&&numberColumns>5000&&ratio>=3.0&&
          largest/smallest<1.1&&!numberNotE) {
        nPasses = 71;
      }
      } 
      if (doIdiot>0) {
      nPasses=CoinMax(nPasses,doIdiot);
      if (nPasses>70) {
        info.setStartingWeight(1.0e3);
        info.setDropEnoughFeasibility(0.01);
      }
      }
      if (nPasses>20) {
#ifdef COIN_HAS_VOL
        int returnCode = solveWithVolume(model2,nPasses,saveDoIdiot);
        if (!returnCode) {
          time2 = CoinCpuTime();
          timeIdiot = time2-timeX;
          handler_->message(CLP_INTERVAL_TIMING,messages_)
            <<"Idiot Crash"<<timeIdiot<<time2-time1
            <<CoinMessageEol;
          timeX=time2;
        } else {
          nPasses=0;
        }
#else
        nPasses=0;
#endif
      } else {
        nPasses=0;
      }
    }
#endif
    if (doCrash) {
      switch(doCrash) {
      // standard
      case 1:
      model2->crash(1000,1);
      break;
      // As in paper by Solow and Halim (approx)
      case 2:
      case 3:
      model2->crash(model2->dualBound(),0);
      break;
        // Just put free in basis
      case 4:
        model2->crash(0.0,3);
        break;
      }
    }
    if (!nPasses) {
      int saveOptions = model2->specialOptions();
      if (model2->numberRows()>100)
      model2->setSpecialOptions(saveOptions|64); // go as far as possible
      //int numberRows = model2->numberRows();
      //int numberColumns = model2->numberColumns();
      if (dynamic_cast< ClpPackedMatrix*>(matrix_)) {
      // See if original wanted vector
      ClpPackedMatrix * clpMatrixO = dynamic_cast< ClpPackedMatrix*>(matrix_);
      ClpMatrixBase * matrix = model2->clpMatrix();
      if (dynamic_cast< ClpPackedMatrix*>(matrix)&&clpMatrixO->wantsSpecialColumnCopy()) {
        ClpPackedMatrix * clpMatrix = dynamic_cast< ClpPackedMatrix*>(matrix);
        clpMatrix->makeSpecialColumnCopy();
        //model2->setSpecialOptions(model2->specialOptions()|256); // to say no row copy for comparisons
        model2->dual(0);
        clpMatrix->releaseSpecialColumnCopy();
      } else {
        model2->dual(0);
      }
      } else {
      model2->dual(0);
      }
    } else if (!numberNotE&&0) {
      // E so we can do in another way
      double * pi = model2->dualRowSolution();
      int i;
      int numberColumns = model2->numberColumns();
      int numberRows = model2->numberRows();
      double * saveObj = new double[numberColumns];
      CoinMemcpyN(model2->objective(),numberColumns,saveObj);
      CoinMemcpyN(model2->objective(),
           numberColumns,model2->dualColumnSolution());
      model2->clpMatrix()->transposeTimes(-1.0,pi,model2->dualColumnSolution());
      CoinMemcpyN(model2->dualColumnSolution(),
           numberColumns,model2->objective());
      const double * rowsol = model2->primalRowSolution();
      double offset=0.0;
      for (i=0;i<numberRows;i++) {
      offset += pi[i]*rowsol[i];
      }
      double value2;
      model2->getDblParam(ClpObjOffset,value2);
      //printf("Offset %g %g\n",offset,value2);
      model2->setDblParam(ClpObjOffset,value2-offset);
      model2->setPerturbation(51);
      //model2->setRowObjective(pi);
      // zero out pi
      //memset(pi,0,numberRows*sizeof(double));
      // Could put some in basis - only partially tested
      model2->allSlackBasis(); 
      //model2->factorization()->maximumPivots(200);
      //model2->setLogLevel(63);
      // solve
      model2->dual(0);
      model2->setDblParam(ClpObjOffset,value2);
      CoinMemcpyN(saveObj,numberColumns,model2->objective());
      // zero out pi
      //memset(pi,0,numberRows*sizeof(double));
      //model2->setRowObjective(pi);
      delete [] saveObj;
      //model2->dual(0);
      model2->setPerturbation(50);
      model2->primal();
    } else {
      // solve
      model2->setPerturbation(100);
      model2->dual(2);
      model2->setPerturbation(50);
      model2->dual(0);
    }
    if (saveLower) {
      CoinMemcpyN(saveLower,numberColumns_,model2->columnLower());
      CoinMemcpyN(saveLower+numberColumns_,numberRows_,model2->rowLower());
      delete [] saveLower;
      saveLower=NULL;
      CoinMemcpyN(saveUpper,numberColumns_,model2->columnUpper());
      CoinMemcpyN(saveUpper+numberColumns_,numberRows_,model2->rowUpper());
      delete [] saveUpper;
      saveUpper=NULL;
    }
    time2 = CoinCpuTime();
    timeCore = time2-timeX;
    handler_->message(CLP_INTERVAL_TIMING,messages_)
      <<"Dual"<<timeCore<<time2-time1
      <<CoinMessageEol;
    timeX=time2;
  } else if (method==ClpSolve::usePrimal) {
#ifndef SLIM_CLP
    if (doIdiot) {
      int nPasses=0;
      Idiot info(*model2);
      // Get average number of elements per column
      double ratio  = static_cast<double> (numberElements)/static_cast<double> (numberColumns);
      // look at rhs
      int iRow;
      double largest=0.0;
      double smallest = 1.0e30;
      double largestGap=0.0;
      int numberNotE=0;
      for (iRow=0;iRow<numberRows;iRow++) {
      double value1 = model2->rowLower_[iRow];
      if (value1&&value1>-1.0e31) {
        largest = CoinMax(largest,fabs(value1));
        smallest=CoinMin(smallest,fabs(value1));
      }
      double value2 = model2->rowUpper_[iRow];
      if (value2&&value2<1.0e31) {
        largest = CoinMax(largest,fabs(value2));
        smallest=CoinMin(smallest,fabs(value2));
      }
      if (value2>value1) {
        numberNotE++;
        if (value2>1.0e31||value1<-1.0e31)
          largestGap = COIN_DBL_MAX;
        else
          largestGap = value2-value1;
      }
      }
      bool increaseSprint=plusMinus;
      if ((specialOptions_&1024)!=0)
      increaseSprint=false;
      if (!plusMinus) {
        // If 90% +- 1 then go for sprint
        if (statistics[0]>=0&&10*statistics[2]<statistics[0]+statistics[1])
          increaseSprint=true;
      }
      bool tryIt= tryItSave;
      if (numberRows<1000&&numberColumns<3000)
        tryIt=false;
      if (tryIt) {
      if (increaseSprint) {
        info.setStartingWeight(1.0e3);
        info.setReduceIterations(6);
        // also be more lenient on infeasibilities
        info.setDropEnoughFeasibility(0.5*info.getDropEnoughFeasibility());
        info.setDropEnoughWeighted(-2.0);
        if (largest/smallest>2.0) {
          nPasses = 10+numberColumns/100000;
          nPasses = CoinMin(nPasses,50);
          nPasses = CoinMax(nPasses,15);
          if (numberRows>20000&&nPasses>5) {
            // Might as well go for it
            nPasses = CoinMax(nPasses,71);
          } else if (numberRows>2000&&nPasses>5) {
            nPasses = CoinMax(nPasses,50);
          } else if (numberElements<3*numberColumns) {
            nPasses=CoinMin(nPasses,10); // probably not worh it
              if (doIdiot<0)
                info.setLightweight(1); // say lightweight idiot
          } else {
              if (doIdiot<0)
                info.setLightweight(1); // say lightweight idiot
            }
        } else if (largest/smallest>1.01||numberElements<=3*numberColumns) {
          nPasses = 10+numberColumns/1000;
          nPasses = CoinMin(nPasses,100);
          nPasses = CoinMax(nPasses,30);
          if (numberRows>25000) {
            // Might as well go for it
            nPasses = CoinMax(nPasses,71);
          }
          if (!largestGap)
            nPasses *= 2;
        } else {
          nPasses = 10+numberColumns/1000;
          nPasses = CoinMin(nPasses,200);
          nPasses = CoinMax(nPasses,100);
          info.setStartingWeight(1.0e-1);
          info.setReduceIterations(6);
          if (!largestGap)
            nPasses *= 2;
          //info.setFeasibilityTolerance(1.0e-7);
        }
        // If few passes - don't bother
        if (nPasses<=5&&!plusMinus)
          nPasses=0;
      } else {
        if (doIdiot<0)
          info.setLightweight(1); // say lightweight idiot
        if (largest/smallest>1.01||numberNotE||statistics[2]>statistics[0]+statistics[1]) {
          if (numberRows>25000||numberColumns>5*numberRows) {
            nPasses = 50;
          } else if (numberColumns>4*numberRows) {
            nPasses = 20;
          } else {
            nPasses=5;
          }
        } else {
          if (numberRows>25000||numberColumns>5*numberRows) {
            nPasses = 50;
            info.setLightweight(0); // say not lightweight idiot
          } else if (numberColumns>4*numberRows) {
            nPasses = 20;
          } else {
            nPasses=15;
          }
        }
        if (ratio<3.0) { 
          nPasses=static_cast<int> (ratio*static_cast<double> (nPasses)/4.0); // probably not worth it
        } else {
          nPasses = CoinMax(nPasses,5);
        }
        if (numberRows>25000&&nPasses>5) {
          // Might as well go for it
          nPasses = CoinMax(nPasses,71);
        } else if (increaseSprint) {
          nPasses *= 2;
          nPasses=CoinMin(nPasses,71);
        } else if (nPasses==5&&ratio>5.0) {
          nPasses = static_cast<int> (static_cast<double> (nPasses)*(ratio/5.0)); // increase if lots of elements per column
          }
        if (nPasses<=5&&!plusMinus)
          nPasses=0;
        //info.setStartingWeight(1.0e-1);
      }
      }
      if (doIdiot>0) {
      // pick up number passes
      nPasses=options.getExtraInfo(1)%1000000;
      if (nPasses>70) {
        info.setStartingWeight(1.0e3);
        info.setReduceIterations(6);
        if (nPasses>=5000) {
          int k= nPasses%100;
          nPasses /= 100;
          info.setReduceIterations(3);
          if (k)
            info.setStartingWeight(1.0e2);
        }
        // also be more lenient on infeasibilities
        info.setDropEnoughFeasibility(0.5*info.getDropEnoughFeasibility());
        info.setDropEnoughWeighted(-2.0);
      } else if (nPasses>=50) {
        info.setStartingWeight(1.0e3);
        //info.setReduceIterations(6);
      } 
      // For experimenting
      if (nPasses<70&&(nPasses%10)>0&&(nPasses%10)<4) {
        info.setStartingWeight(1.0e3);
        info.setLightweight(nPasses%10); // special testing
#ifdef COIN_DEVELOP
          printf("warning - odd lightweight %d\n",nPasses%10);
        //info.setReduceIterations(6);
#endif
      }
      }
      if (options.getExtraInfo(1)>1000000)
      nPasses += 1000000;
      if (nPasses) {
      doCrash=0;
#if 0
      double * solution = model2->primalColumnSolution();
      int iColumn;
      double * saveLower = new double[numberColumns];
      CoinMemcpyN(model2->columnLower(),numberColumns,saveLower);
      double * saveUpper = new double[numberColumns];
      CoinMemcpyN(model2->columnUpper(),numberColumns,saveUpper);
      printf("doing tighten before idiot\n");
      model2->tightenPrimalBounds();
      // Move solution
      double * columnLower = model2->columnLower();
      double * columnUpper = model2->columnUpper();
      for (iColumn=0;iColumn<numberColumns;iColumn++) {
        if (columnLower[iColumn]>0.0)
          solution[iColumn]=columnLower[iColumn];
        else if (columnUpper[iColumn]<0.0)
          solution[iColumn]=columnUpper[iColumn];
        else
          solution[iColumn]=0.0;
      }
      CoinMemcpyN(saveLower,numberColumns,columnLower);
      CoinMemcpyN(saveUpper,numberColumns,columnUpper);
      delete [] saveLower;
      delete [] saveUpper;
#else
      // Allow for crossover
        //if (doIdiot>0)
          info.setStrategy(512|info.getStrategy());
      // Allow for scaling
      info.setStrategy(32|info.getStrategy());
      info.crash(nPasses,model2->messageHandler(),model2->messagesPointer());
#endif
      time2 = CoinCpuTime();
      timeIdiot = time2-timeX;
      handler_->message(CLP_INTERVAL_TIMING,messages_)
        <<"Idiot Crash"<<timeIdiot<<time2-time1
        <<CoinMessageEol;
      timeX=time2;
      }
    }
#endif
    // ?
    if (doCrash) {
      switch(doCrash) {
      // standard
      case 1:
      model2->crash(1000,1);
      break;
      // As in paper by Solow and Halim (approx)
      case 2:
      model2->crash(model2->dualBound(),0);
      break;
      // My take on it
      case 3:
      model2->crash(model2->dualBound(),-1);
      break;
        // Just put free in basis
      case 4:
        model2->crash(0.0,3);
        break;
      }
    }
#ifndef SLIM_CLP
    if (doSlp>0&&objective_->type()==2) {
      model2->nonlinearSLP(doSlp,1.0e-5);
    }
#endif
    if (options.getSpecialOption(1)!=2||
      options.getExtraInfo(1)<1000000) {
      if (dynamic_cast< ClpPackedMatrix*>(matrix_)) {
      // See if original wanted vector
      ClpPackedMatrix * clpMatrixO = dynamic_cast< ClpPackedMatrix*>(matrix_);
      ClpMatrixBase * matrix = model2->clpMatrix();
      if (dynamic_cast< ClpPackedMatrix*>(matrix)&&clpMatrixO->wantsSpecialColumnCopy()) {
        ClpPackedMatrix * clpMatrix = dynamic_cast< ClpPackedMatrix*>(matrix);
        clpMatrix->makeSpecialColumnCopy();
        //model2->setSpecialOptions(model2->specialOptions()|256); // to say no row copy for comparisons
        model2->primal(primalStartup);
        clpMatrix->releaseSpecialColumnCopy();
      } else {
        model2->primal(primalStartup);
      }
      } else {
      model2->primal(primalStartup);
      }
    }
    time2 = CoinCpuTime();
    timeCore = time2-timeX;
    handler_->message(CLP_INTERVAL_TIMING,messages_)
      <<"Primal"<<timeCore<<time2-time1
      <<CoinMessageEol;
    timeX=time2;
  } else if (method==ClpSolve::usePrimalorSprint) {
    // Sprint
    /*
      This driver implements what I called Sprint when I introduced the idea
      many years ago.  Cplex calls it "sifting" which I think is just as silly.
      When I thought of this trivial idea
      it reminded me of an LP code of the 60's called sprint which after
      every factorization took a subset of the matrix into memory (all
      64K words!) and then iterated very fast on that subset.  On the
      problems of those days it did not work very well, but it worked very
      well on aircrew scheduling problems where there were very large numbers
      of columns all with the same flavor.
    */
    
    /* The idea works best if you can get feasible easily.  To make it
       more general we can add in costed slacks */
    
    int originalNumberColumns = model2->numberColumns();
    int numberRows = model2->numberRows();
    ClpSimplex * originalModel2 = model2;
    
    // We will need arrays to choose variables.  These are too big but ..
    double * weight = new double [numberRows+originalNumberColumns];
    int * sort = new int [numberRows+originalNumberColumns];
    int numberSort=0;
    // We are going to add slacks to get feasible.
    // initial list will just be artificials
    int iColumn;
    const double * columnLower = model2->columnLower();
    const double * columnUpper = model2->columnUpper();
    double * columnSolution = model2->primalColumnSolution();

    // See if we have costed slacks
    int * negSlack = new int[numberRows];
    int * posSlack = new int[numberRows];
    int iRow;
    for (iRow=0;iRow<numberRows;iRow++) {
      negSlack[iRow]=-1;
      posSlack[iRow]=-1;
    }
    const double * element = model2->matrix()->getElements();
    const int * row = model2->matrix()->getIndices();
    const CoinBigIndex * columnStart = model2->matrix()->getVectorStarts();
    const int * columnLength = model2->matrix()->getVectorLengths();
    //bool allSlack = (numberRowsBasic==numberRows);
    for (iColumn=0;iColumn<originalNumberColumns;iColumn++) {
      if (!columnSolution[iColumn]||fabs(columnSolution[iColumn])>1.0e20) {
        double value =0.0;
        if (columnLower[iColumn]>0.0)
          value = columnLower[iColumn];
        else if (columnUpper[iColumn]<0.0)
          value = columnUpper[iColumn];
        columnSolution[iColumn]=value;
      }
      if (columnLength[iColumn]==1) {
        int jRow=row[columnStart[iColumn]];
        if (!columnLower[iColumn]) {
          if (element[columnStart[iColumn]]>0.0&&posSlack[jRow]<0)
            posSlack[jRow]=iColumn;
          else if (element[columnStart[iColumn]]<0.0&&negSlack[jRow]<0)
            negSlack[jRow]=iColumn;
        } else if (!columnUpper[iColumn]) {
          if (element[columnStart[iColumn]]<0.0&&posSlack[jRow]<0)
            posSlack[jRow]=iColumn;
          else if (element[columnStart[iColumn]]>0.0&&negSlack[jRow]<0)
            negSlack[jRow]=iColumn;
        }
      }
    }
    // now see what that does to row solution
    double * rowSolution = model2->primalRowSolution();
    CoinZeroN (rowSolution,numberRows);
    model2->clpMatrix()->times(1.0,columnSolution,rowSolution);
    // See if we can adjust using costed slacks
    double penalty=CoinMax(1.0e5,CoinMin(infeasibilityCost_*0.01,1.0e10))*optimizationDirection_;
    const double * lower = model2->rowLower();
    const double * upper = model2->rowUpper();
    for (iRow=0;iRow<numberRows;iRow++) {
      if (lower[iRow]>rowSolution[iRow]+1.0e-8) {
        int jColumn = posSlack[iRow];
        if (jColumn>=0) {
          if (columnSolution[jColumn])
            continue;
          double difference = lower[iRow]-rowSolution[iRow];
          double elementValue = element[columnStart[jColumn]];
          if (elementValue>0.0) {
            double movement = CoinMin(difference/elementValue,columnUpper[jColumn]);
            columnSolution[jColumn] = movement;
            rowSolution[iRow] += movement*elementValue;
          } else {
            double movement = CoinMax(difference/elementValue,columnLower[jColumn]);
            columnSolution[jColumn] = movement;
            rowSolution[iRow] += movement*elementValue;
          }
        }
      } else if (upper[iRow]<rowSolution[iRow]-1.0e-8) {
        int jColumn = negSlack[iRow];
        if (jColumn>=0) {
          if (columnSolution[jColumn])
            continue;
          double difference = upper[iRow]-rowSolution[iRow];
          double elementValue = element[columnStart[jColumn]];
          if (elementValue<0.0) {
            double movement = CoinMin(difference/elementValue,columnUpper[jColumn]);
            columnSolution[jColumn] = movement;
            rowSolution[iRow] += movement*elementValue;
          } else {
            double movement = CoinMax(difference/elementValue,columnLower[jColumn]);
            columnSolution[jColumn] = movement;
            rowSolution[iRow] += movement*elementValue;
          }
        }
      }
    }
    delete [] negSlack;
    delete [] posSlack;
    int nRow=numberRows;
    bool network=false;
    if (dynamic_cast< ClpNetworkMatrix*>(matrix_)) {
      network=true;
      nRow *= 2;
    }
    int * addStarts = new int [nRow+1];
    int * addRow = new int[nRow];
    double * addElement = new double[nRow];
    addStarts[0]=0;
    int numberArtificials=0;
    int numberAdd=0;
    double * addCost = new double [numberRows];
    for (iRow=0;iRow<numberRows;iRow++) {
      if (lower[iRow]>rowSolution[iRow]+1.0e-8) {
      addRow[numberAdd]=iRow;
      addElement[numberAdd++]=1.0;
      if (network) {
        addRow[numberAdd]=numberRows;
        addElement[numberAdd++]=-1.0;
      }
      addCost[numberArtificials]=penalty;
      numberArtificials++;
      addStarts[numberArtificials]=numberAdd;
      } else if (upper[iRow]<rowSolution[iRow]-1.0e-8) {
      addRow[numberAdd]=iRow;
      addElement[numberAdd++]=-1.0;
      if (network) {
        addRow[numberAdd]=numberRows;
        addElement[numberAdd++]=1.0;
      }
      addCost[numberArtificials]=penalty;
      numberArtificials++;
      addStarts[numberArtificials]=numberAdd;
      }
    }
    if (numberArtificials) {
      // need copy so as not to disturb original
      model2 = new ClpSimplex(*model2);
      if (network) {
      // network - add a null row
      model2->addRow(0,NULL,NULL,-COIN_DBL_MAX,COIN_DBL_MAX);
      numberRows++;
      }
      model2->addColumns(numberArtificials,NULL,NULL,addCost,
                   addStarts,addRow,addElement);
    }
    delete [] addStarts;
    delete [] addRow;
    delete [] addElement;
    delete [] addCost;
    // look at rhs to see if to perturb
    double largest=0.0;
    double smallest = 1.0e30;
    for (iRow=0;iRow<numberRows;iRow++) {
      double value;
      value = fabs(model2->rowLower_[iRow]);
      if (value&&value<1.0e30) {
      largest = CoinMax(largest,value);
      smallest=CoinMin(smallest,value);
      }
      value = fabs(model2->rowUpper_[iRow]);
      if (value&&value<1.0e30) {
      largest = CoinMax(largest,value);
      smallest=CoinMin(smallest,value);
      }
    }
    double * saveLower = NULL;
    double * saveUpper = NULL;
    if (largest<2.01*smallest) {
      // perturb - so switch off standard
      model2->setPerturbation(100);
      saveLower = new double[numberRows];
      CoinMemcpyN(model2->rowLower_,numberRows,saveLower);
      saveUpper = new double[numberRows];
      CoinMemcpyN(model2->rowUpper_,numberRows,saveUpper);
      double * lower = model2->rowLower();
      double * upper = model2->rowUpper();
      for (iRow=0;iRow<numberRows;iRow++) {
      double lowerValue=lower[iRow], upperValue=upper[iRow];
      double value = randomNumberGenerator_.randomDouble();
      if (upperValue>lowerValue+primalTolerance_) {
        if (lowerValue>-1.0e20&&lowerValue)
          lowerValue -= value * 1.0e-4*fabs(lowerValue); 
        if (upperValue<1.0e20&&upperValue)
          upperValue += value * 1.0e-4*fabs(upperValue); 
      } else if (upperValue>0.0) {
        upperValue -= value * 1.0e-4*fabs(lowerValue); 
        lowerValue -= value * 1.0e-4*fabs(lowerValue); 
      } else if (upperValue<0.0) {
        upperValue += value * 1.0e-4*fabs(lowerValue); 
        lowerValue += value * 1.0e-4*fabs(lowerValue); 
      } else {
      }
      lower[iRow]=lowerValue;
      upper[iRow]=upperValue;
      }
    }
    int i;
    // Just do this number of passes in Sprint
    if (doSprint>0)
      maxSprintPass=options.getExtraInfo(1);
    // but if big use to get ratio
    double ratio=3;
    if (maxSprintPass>1000) {
      ratio = static_cast<double> (maxSprintPass)*0.0001;
      ratio = CoinMax(ratio,1.1);
      maxSprintPass= maxSprintPass %1000;
#ifdef COIN_DEVELOP
      printf("%d passes wanted with ratio of %g\n",maxSprintPass,ratio);
#endif
    }
    // Just take this number of columns in small problem
    int smallNumberColumns = static_cast<int> (CoinMin(ratio*numberRows,static_cast<double> (numberColumns)));
    smallNumberColumns = CoinMax(smallNumberColumns,3000);
    smallNumberColumns = CoinMin(smallNumberColumns,numberColumns);
    //int smallNumberColumns = CoinMin(12*numberRows/10,numberColumns);
    //smallNumberColumns = CoinMax(smallNumberColumns,3000);
    //smallNumberColumns = CoinMax(smallNumberColumns,numberRows+1000);
    // redo as may have changed
    columnLower = model2->columnLower();
    columnUpper = model2->columnUpper();
    columnSolution = model2->primalColumnSolution();
    // Set up initial list
    numberSort=0;
    if (numberArtificials) {
      numberSort=numberArtificials;
      for (i=0;i<numberSort;i++)
      sort[i] = i+originalNumberColumns;
    } 
    // maybe a solution there already
    for (iColumn=0;iColumn<originalNumberColumns;iColumn++) {
      if (model2->getColumnStatus(iColumn)==basic)
        sort[numberSort++]=iColumn;
    }
    for (iColumn=0;iColumn<originalNumberColumns;iColumn++) {
      if (model2->getColumnStatus(iColumn)!=basic) {
        if (columnSolution[iColumn]>columnLower[iColumn]&&
            columnSolution[iColumn]<columnUpper[iColumn]&&
          columnSolution[iColumn])
          sort[numberSort++]=iColumn;
      }
    }
    numberSort = CoinMin(numberSort,smallNumberColumns);
    
    int numberColumns = model2->numberColumns();
    double * fullSolution = model2->primalColumnSolution();
    
    
    int iPass;
    double lastObjective=1.0e31;
    // It will be safe to allow dense
    model2->setInitialDenseFactorization(true);
    
    // We will be using all rows
    int * whichRows = new int [numberRows];
    for (iRow=0;iRow<numberRows;iRow++)
      whichRows[iRow]=iRow;
    double originalOffset;
    model2->getDblParam(ClpObjOffset,originalOffset);
    int totalIterations=0;
    double lastSumArtificials=COIN_DBL_MAX;
    int originalMaxSprintPass=maxSprintPass;
    maxSprintPass=20; // so we do that many if infeasible
    for (iPass=0;iPass<maxSprintPass;iPass++) {
      //printf("Bug until submodel new version\n");
      //CoinSort_2(sort,sort+numberSort,weight);
      // Create small problem
      ClpSimplex small(model2,numberRows,whichRows,numberSort,sort);
      small.setPerturbation(model2->perturbation());
      small.setInfeasibilityCost(model2->infeasibilityCost());
      if (model2->factorizationFrequency()==200) {
        // User did not touch preset
        small.defaultFactorizationFrequency();
      }
      // now see what variables left out do to row solution
      double * rowSolution = model2->primalRowSolution();
      double * sumFixed = new double[numberRows];
      CoinZeroN (sumFixed,numberRows);
      int iRow,iColumn;
      // zero out ones in small problem
      for (iColumn=0;iColumn<numberSort;iColumn++) {
      int kColumn = sort[iColumn];
      fullSolution[kColumn]=0.0;
      }
      // Get objective offset
      double offset=0.0;
      const double * objective = model2->objective();
      for (iColumn=0;iColumn<numberColumns;iColumn++) 
      offset += fullSolution[iColumn]*objective[iColumn];
      small.setDblParam(ClpObjOffset,originalOffset-offset);
      model2->clpMatrix()->times(1.0,fullSolution,sumFixed);
      
      double * lower = small.rowLower();
      double * upper = small.rowUpper();
      for (iRow=0;iRow<numberRows;iRow++) {
      if (lower[iRow]>-1.0e50) 
        lower[iRow] -= sumFixed[iRow];
      if (upper[iRow]<1.0e50)
        upper[iRow] -= sumFixed[iRow];
      rowSolution[iRow] -= sumFixed[iRow];
      }
      delete [] sumFixed;
      // Solve 
      if (interrupt)
      currentModel = &small;
      small.defaultFactorizationFrequency();
      if (dynamic_cast< ClpPackedMatrix*>(matrix_)) {
      // See if original wanted vector
      ClpPackedMatrix * clpMatrixO = dynamic_cast< ClpPackedMatrix*>(matrix_);
      ClpMatrixBase * matrix = small.clpMatrix();
      if (dynamic_cast< ClpPackedMatrix*>(matrix)&&clpMatrixO->wantsSpecialColumnCopy()) {
        ClpPackedMatrix * clpMatrix = dynamic_cast< ClpPackedMatrix*>(matrix);
        clpMatrix->makeSpecialColumnCopy();
        small.primal(1);
        clpMatrix->releaseSpecialColumnCopy();
      } else {
#if 1
        small.primal(1);
#else
        int numberColumns = small.numberColumns();
        int numberRows = small.numberRows();
        // Use dual region
        double * rhs = small.dualRowSolution();
        int * whichRow = new int[3*numberRows];
        int * whichColumn = new int[2*numberColumns];
        int nBound;
        ClpSimplex * small2 = ((ClpSimplexOther *) (&small))->crunch(rhs,whichRow,whichColumn,
                                                      nBound,false,false);
        if (small2) {
          small2->primal(1);
          if (small2->problemStatus()==0) {
            small.setProblemStatus(0);
            ((ClpSimplexOther *) (&small))->afterCrunch(*small2,whichRow,whichColumn,nBound);
          } else {
            small2->primal(1);
            if (small2->problemStatus())
            small.primal(1);
          }
          delete small2;
        } else {
          small.primal(1);
        }
        delete [] whichRow;
        delete [] whichColumn;
#endif
      }
      } else {
      small.primal(1);
      }
      totalIterations += small.numberIterations();
      // move solution back
      const double * solution = small.primalColumnSolution();
      for (iColumn=0;iColumn<numberSort;iColumn++) {
      int kColumn = sort[iColumn];
      model2->setColumnStatus(kColumn,small.getColumnStatus(iColumn));
      fullSolution[kColumn]=solution[iColumn];
      }
      for (iRow=0;iRow<numberRows;iRow++) 
      model2->setRowStatus(iRow,small.getRowStatus(iRow));
      CoinMemcpyN(small.primalRowSolution(),
           numberRows,model2->primalRowSolution());
      double sumArtificials = 0.0;
      for (i=0;i<numberArtificials;i++)
      sumArtificials += fullSolution[i + originalNumberColumns];
      if (sumArtificials&&iPass>5&&sumArtificials>=lastSumArtificials) {
      // increase costs
      double * cost = model2->objective()+originalNumberColumns;
      double newCost = CoinMin(1.0e10,cost[0]*1.5);
      for (i=0;i<numberArtificials;i++)
        cost[i]=newCost;
      }
      lastSumArtificials = sumArtificials;
      // get reduced cost for large problem
      double * djs = model2->dualColumnSolution();
      CoinMemcpyN(model2->objective(),numberColumns,djs);
      model2->clpMatrix()->transposeTimes(-1.0,small.dualRowSolution(),djs);
      int numberNegative=0;
      double sumNegative = 0.0;
      // now massage weight so all basic in plus good djs
      // first count and do basic
      numberSort=0;
      for (iColumn=0;iColumn<numberColumns;iColumn++) {
      double dj = djs[iColumn]*optimizationDirection_;
      double value = fullSolution[iColumn];
      if (model2->getColumnStatus(iColumn)==ClpSimplex::basic) {
        sort[numberSort++] = iColumn;
      } else if (dj<-dualTolerance_&&value<columnUpper[iColumn]) {
        numberNegative++;
        sumNegative -= dj;
      } else if (dj>dualTolerance_&&value>columnLower[iColumn]) {
        numberNegative++;
        sumNegative += dj;
      }
      }
      handler_->message(CLP_SPRINT,messages_)
      <<iPass+1<<small.numberIterations()<<small.objectiveValue()<<sumNegative
      <<numberNegative
      <<CoinMessageEol;
      if (sumArtificials<1.0e-8&&originalMaxSprintPass>=0) {
      maxSprintPass = iPass+originalMaxSprintPass;
      originalMaxSprintPass=-1;
      }
      if (iPass>20)
      sumArtificials=0.0;
      if ((small.objectiveValue()*optimizationDirection_>lastObjective-1.0e-7&&iPass>5&&sumArtificials<1.0e-8)||
        (!small.numberIterations()&&iPass)||
        iPass==maxSprintPass-1||small.status()==3) {

      break; // finished
      } else {
      lastObjective = small.objectiveValue()*optimizationDirection_;
      double tolerance;
      double averageNegDj = sumNegative/static_cast<double> (numberNegative+1);
      if (numberNegative+numberSort>smallNumberColumns)
        tolerance = -dualTolerance_;
      else 
        tolerance = 10.0*averageNegDj;
      int saveN = numberSort;
      for (iColumn=0;iColumn<numberColumns;iColumn++) {
        double dj = djs[iColumn]*optimizationDirection_;
        double value = fullSolution[iColumn];
        if (model2->getColumnStatus(iColumn)!=ClpSimplex::basic) {
          if (dj<-dualTolerance_&&value<columnUpper[iColumn])
            dj = dj;
          else if (dj>dualTolerance_&&value>columnLower[iColumn])
            dj = -dj;
          else if (columnUpper[iColumn]>columnLower[iColumn])
            dj = fabs(dj);
          else
            dj = 1.0e50;
          if (dj<tolerance) {
            weight[numberSort] = dj;
            sort[numberSort++] = iColumn;
          }
        }
      }
      // sort
      CoinSort_2(weight+saveN,weight+numberSort,sort+saveN);
      numberSort = CoinMin(smallNumberColumns,numberSort);
      }
    }
    if (interrupt) 
      currentModel = model2;
    for (i=0;i<numberArtificials;i++)
      sort[i] = i + originalNumberColumns;
    model2->deleteColumns(numberArtificials,sort);
    if (network) {
      int iRow=numberRows-1;
      model2->deleteRows(1,&iRow);
    }
    delete [] weight;
    delete [] sort;
    delete [] whichRows;
    if (saveLower) {
      // unperturb and clean
      for (iRow=0;iRow<numberRows;iRow++) {
      double diffLower = saveLower[iRow]-model2->rowLower_[iRow];
      double diffUpper = saveUpper[iRow]-model2->rowUpper_[iRow];
      model2->rowLower_[iRow]=saveLower[iRow];
      model2->rowUpper_[iRow]=saveUpper[iRow];
      if (diffLower) 
        assert (!diffUpper||fabs(diffLower-diffUpper)<1.0e-5);
      else
        diffLower = diffUpper;
      model2->rowActivity_[iRow] += diffLower;
      }
      delete [] saveLower;
      delete [] saveUpper;
    }
    model2->primal(1);
    model2->setPerturbation(savePerturbation);
    if (model2!=originalModel2) {
      originalModel2->moveInfo(*model2);
      delete model2;
      model2 = originalModel2;
    }
    time2 = CoinCpuTime();
    timeCore = time2-timeX;
    handler_->message(CLP_INTERVAL_TIMING,messages_)
      <<"Sprint"<<timeCore<<time2-time1
      <<CoinMessageEol;
    timeX=time2;
    model2->setNumberIterations(model2->numberIterations()+totalIterations);
  } else if (method==ClpSolve::useBarrier||method==ClpSolve::useBarrierNoCross) {
#ifndef SLIM_CLP
    //printf("***** experimental pretty crude barrier\n");
    //#define SAVEIT 2
#ifndef SAVEIT
#define BORROW
#endif
#ifdef BORROW
    ClpInterior barrier;
    barrier.borrowModel(*model2);
#else
    ClpInterior barrier(*model2);
#endif
    if (interrupt) 
      currentModel2 = &barrier;
    int barrierOptions = options.getSpecialOption(4);
    int aggressiveGamma=0;
    bool presolveInCrossover=false;
    bool scale=false;
    bool doKKT=false;
    bool forceFixing=false;
    int speed=0;
    if (barrierOptions&16) {
      barrierOptions &= ~16;
      doKKT=true;
    }
    if (barrierOptions&(32+64+128)) {
      aggressiveGamma=(barrierOptions&(32+64+128))>>5;
      barrierOptions &= ~(32+64+128);
    }
    if (barrierOptions&256) {
      barrierOptions &= ~256;
      presolveInCrossover=true;
    }
    if (barrierOptions&512) {
      barrierOptions &= ~512;
      forceFixing=true;
    }
    if (barrierOptions&1024) {
      barrierOptions &= ~1024;
      barrier.setProjectionTolerance(1.0e-9);
    }
    if (barrierOptions&(2048|4096)) {
      speed = (barrierOptions&(2048|4096))>>11;
      barrierOptions &= ~(2048|4096);
    }
    if (barrierOptions&8) {
      barrierOptions &= ~8;
      scale=true;
    }
    // If quadratic force KKT
    if (quadraticObj) {
      doKKT=true;
    }
    switch (barrierOptions) {
    case 0:
    default:
      if (!doKKT) {
      ClpCholeskyBase * cholesky = new ClpCholeskyBase();
      cholesky->setIntegerParameter(0,speed);
      barrier.setCholesky(cholesky);
      } else {
      ClpCholeskyBase * cholesky = new ClpCholeskyBase();
      cholesky->setKKT(true);
      barrier.setCholesky(cholesky);
      }
      break;
    case 1:
      if (!doKKT) {
      ClpCholeskyDense * cholesky = new ClpCholeskyDense();
      barrier.setCholesky(cholesky);
      } else {
      ClpCholeskyDense * cholesky = new ClpCholeskyDense();
      cholesky->setKKT(true);
      barrier.setCholesky(cholesky);
      }
      break;
#ifdef WSSMP_BARRIER
    case 2:
      {
      ClpCholeskyWssmp * cholesky = new ClpCholeskyWssmp(CoinMax(100,model2->numberRows()/10));
      barrier.setCholesky(cholesky);
      assert (!doKKT);
      }
      break;
    case 3:
      if (!doKKT) {
      ClpCholeskyWssmp * cholesky = new ClpCholeskyWssmp();
      barrier.setCholesky(cholesky);
      } else {
      ClpCholeskyWssmpKKT * cholesky = new ClpCholeskyWssmpKKT(CoinMax(100,model2->numberRows()/10));
      barrier.setCholesky(cholesky);
      }
      break;
#endif
#ifdef UFL_BARRIER
    case 4:
      if (!doKKT) {
      ClpCholeskyUfl * cholesky = new ClpCholeskyUfl();
      barrier.setCholesky(cholesky);
      } else {
      ClpCholeskyUfl * cholesky = new ClpCholeskyUfl();
      cholesky->setKKT(true);
      barrier.setCholesky(cholesky);
      }
      break;
#endif
#ifdef TAUCS_BARRIER
    case 5:
      {
      ClpCholeskyTaucs * cholesky = new ClpCholeskyTaucs();
      barrier.setCholesky(cholesky);
      assert (!doKKT);
      }
      break;
#endif
#ifdef MUMPS_BARRIER
    case 6:
      {
      ClpCholeskyMumps * cholesky = new ClpCholeskyMumps();
      barrier.setCholesky(cholesky);
      assert (!doKKT);
      }
      break;
#endif
    }
    int numberRows = model2->numberRows();
    int numberColumns = model2->numberColumns();
    int saveMaxIts = model2->maximumIterations();
    if (saveMaxIts<1000) {
      barrier.setMaximumBarrierIterations(saveMaxIts);
      model2->setMaximumIterations(10000000);
    }
#ifndef SAVEIT
    //barrier.setDiagonalPerturbation(1.0e-25);
    if (aggressiveGamma) {
      switch (aggressiveGamma) {
      case 1:
        barrier.setGamma(1.0e-5);
        barrier.setDelta(1.0e-5);
        break;
      case 2:
        barrier.setGamma(1.0e-7);
        break;
      case 3:
        barrier.setDelta(1.0e-5);
        break;
      case 4:
        barrier.setGamma(1.0e-3);
        barrier.setDelta(1.0e-3);
        break;
      case 5:
        barrier.setGamma(1.0e-3);
        break;
      case 6:
        barrier.setDelta(1.0e-3);
        break;
      }
    }
    if (scale)
      barrier.scaling(1);
    else
      barrier.scaling(0);
    barrier.primalDual();
#elif SAVEIT==1
    barrier.primalDual();
#else
    model2->restoreModel("xx.save");
    // move solutions
    CoinMemcpyN(model2->primalRowSolution(),
            numberRows,barrier.primalRowSolution());
    CoinMemcpyN(model2->dualRowSolution(),
            numberRows,barrier.dualRowSolution());
    CoinMemcpyN(model2->primalColumnSolution(),
            numberColumns,barrier.primalColumnSolution());
    CoinMemcpyN(model2->dualColumnSolution(),
            numberColumns,barrier.dualColumnSolution());
#endif
    time2 = CoinCpuTime();
    timeCore = time2-timeX;
    handler_->message(CLP_INTERVAL_TIMING,messages_)
      <<"Barrier"<<timeCore<<time2-time1
      <<CoinMessageEol;
    timeX=time2;
    int maxIts = barrier.maximumBarrierIterations();
    int barrierStatus=barrier.status();
    double gap = barrier.complementarityGap();
    // get which variables are fixed
    double * saveLower=NULL;
    double * saveUpper=NULL;
    ClpPresolve pinfo2;
    ClpSimplex * saveModel2=NULL;
    bool extraPresolve=false;
    int numberFixed = barrier.numberFixed();
    if (numberFixed) {
      int numberRows = barrier.numberRows();
      int numberColumns = barrier.numberColumns();
      int numberTotal = numberRows+numberColumns;
      saveLower = new double [numberTotal];
      saveUpper = new double [numberTotal];
      CoinMemcpyN(barrier.columnLower(),numberColumns,saveLower);
      CoinMemcpyN(barrier.rowLower(),numberRows,saveLower+numberColumns);
      CoinMemcpyN(barrier.columnUpper(),numberColumns,saveUpper);
      CoinMemcpyN(barrier.rowUpper(),numberRows,saveUpper+numberColumns);
    }
    if (((numberFixed*20>barrier.numberRows()&&numberFixed>5000)||forceFixing)&&
        presolveInCrossover) {
      // may as well do presolve
      if (!forceFixing) {
      barrier.fixFixed();
      } else {
      // Fix
      int n=barrier.numberColumns();
      double * lower = barrier.columnLower();
      double * upper = barrier.columnUpper();
      double * solution = barrier.primalColumnSolution();
      int nFix=0;
      for (int i=0;i<n;i++) {
        if (barrier.fixedOrFree(i)&&lower[i]<upper[i]) {
          double value = solution[i];
          if (value<lower[i]+1.0e-6&&value-lower[i]<upper[i]-value) {
            solution[i]=lower[i];
            upper[i]=lower[i];
            nFix++;
          } else if (value>upper[i]-1.0e-6&&value-lower[i]>upper[i]-value) {
            solution[i]=upper[i];
            lower[i]=upper[i];
            nFix++;
          }
        }
      }
#ifdef CLP_INVESTIGATE
      printf("%d columns fixed\n",nFix);
#endif
      int nr=barrier.numberRows();
      lower = barrier.rowLower();
      upper = barrier.rowUpper();
      solution = barrier.primalRowSolution();
      nFix=0;
      for (int i=0;i<nr;i++) {
        if (barrier.fixedOrFree(i+n)&&lower[i]<upper[i]) {
          double value = solution[i];
          if (value<lower[i]+1.0e-6&&value-lower[i]<upper[i]-value) {
            solution[i]=lower[i];
            upper[i]=lower[i];
            nFix++;
          } else if (value>upper[i]-1.0e-6&&value-lower[i]>upper[i]-value) {
            solution[i]=upper[i];
            lower[i]=upper[i];
            nFix++;
          }
        }
      }
#ifdef CLP_INVESTIGATE
      printf("%d row slacks fixed\n",nFix);
#endif
      }
      saveModel2=model2;
      extraPresolve=true;
    } else if (numberFixed) {
      // Set fixed to bounds (may have restored earlier solution)
      if (!forceFixing) {
      barrier.fixFixed(false);
      } else {
      // Fix
      int n=barrier.numberColumns();
      double * lower = barrier.columnLower();
      double * upper = barrier.columnUpper();
      double * solution = barrier.primalColumnSolution();
      int nFix=0;
      for (int i=0;i<n;i++) {
        if (barrier.fixedOrFree(i)&&lower[i]<upper[i]) {
          double value = solution[i];
          if (value<lower[i]+1.0e-8&&value-lower[i]<upper[i]-value) {
            solution[i]=lower[i];
            upper[i]=lower[i];
            nFix++;
          } else if (value>upper[i]-1.0e-8&&value-lower[i]>upper[i]-value) {
            solution[i]=upper[i];
            lower[i]=upper[i];
            nFix++;
          } else {
            //printf("fixcol %d %g <= %g <= %g\n",
            //     i,lower[i],solution[i],upper[i]);
          }
        }
      }
#ifdef CLP_INVESTIGATE
      printf("%d columns fixed\n",nFix);
#endif
      int nr=barrier.numberRows();
      lower = barrier.rowLower();
      upper = barrier.rowUpper();
      solution = barrier.primalRowSolution();
      nFix=0;
      for (int i=0;i<nr;i++) {
        if (barrier.fixedOrFree(i+n)&&lower[i]<upper[i]) {
          double value = solution[i];
          if (value<lower[i]+1.0e-5&&value-lower[i]<upper[i]-value) {
            solution[i]=lower[i];
            upper[i]=lower[i];
            nFix++;
          } else if (value>upper[i]-1.0e-5&&value-lower[i]>upper[i]-value) {
            solution[i]=upper[i];
            lower[i]=upper[i];
            nFix++;
          } else {
            //printf("fixrow %d %g <= %g <= %g\n",
            //     i,lower[i],solution[i],upper[i]);
          }
        }
      }
#ifdef CLP_INVESTIGATE
      printf("%d row slacks fixed\n",nFix);
#endif
      }
    }
#ifdef BORROW    
    barrier.returnModel(*model2);
    double * rowPrimal = new double [numberRows];
    double * columnPrimal = new double [numberColumns];
    double * rowDual = new double [numberRows];
    double * columnDual = new double [numberColumns];
    // move solutions other way
    CoinMemcpyN(model2->primalRowSolution(),
            numberRows,rowPrimal);
    CoinMemcpyN(model2->dualRowSolution(),
            numberRows,rowDual);
    CoinMemcpyN(model2->primalColumnSolution(),
            numberColumns,columnPrimal);
    CoinMemcpyN(model2->dualColumnSolution(),
              numberColumns,columnDual);
#else
    double * rowPrimal = barrier.primalRowSolution();
    double * columnPrimal = barrier.primalColumnSolution();
    double * rowDual = barrier.dualRowSolution();
    double * columnDual = barrier.dualColumnSolution();
    // move solutions
    CoinMemcpyN(rowPrimal,
            numberRows,model2->primalRowSolution());
    CoinMemcpyN(rowDual,
            numberRows,model2->dualRowSolution());
    CoinMemcpyN(columnPrimal,
            numberColumns,model2->primalColumnSolution());
    CoinMemcpyN(columnDual,
              numberColumns,model2->dualColumnSolution());
#endif
    if (saveModel2) {
      // do presolve
      model2 = pinfo2.presolvedModel(*model2,dblParam_[ClpPresolveTolerance],
                            false,5,true);
      if (!model2) {
      model2=saveModel2;
      saveModel2=NULL;
        int numberRows = model2->numberRows();
        int numberColumns = model2->numberColumns();
        CoinMemcpyN(saveLower,numberColumns,model2->columnLower());
        CoinMemcpyN(saveLower+numberColumns,numberRows,model2->rowLower());
        delete [] saveLower;
        CoinMemcpyN(saveUpper,numberColumns,model2->columnUpper());
        CoinMemcpyN(saveUpper+numberColumns,numberRows,model2->rowUpper());
        delete [] saveUpper;
      saveLower=NULL;
      saveUpper=NULL;
      }
    }
    if (method==ClpSolve::useBarrier||barrierStatus<0) {
      if (maxIts&&barrierStatus<4&&!quadraticObj) {
      //printf("***** crossover - needs more thought on difficult models\n");
#if SAVEIT==1
      model2->ClpSimplex::saveModel("xx.save");
#endif
      // make sure no status left
      model2->createStatus();
      // solve
      if (!forceFixing)
        model2->setPerturbation(100);
        if (model2->factorizationFrequency()==200) {
          // User did not touch preset
          model2->defaultFactorizationFrequency();
        }
#if 1
      // throw some into basis 
      if(!forceFixing) {
        int numberRows = model2->numberRows();
        int numberColumns = model2->numberColumns();
        double * dsort = new double[numberColumns];
        int * sort = new int[numberColumns];
        int n=0;
        const double * columnLower = model2->columnLower();
        const double * columnUpper = model2->columnUpper();
        double * primalSolution = model2->primalColumnSolution();
        const double * dualSolution = model2->dualColumnSolution();
        double tolerance = 10.0*primalTolerance_;
        int i;
        for ( i=0;i<numberRows;i++) 
          model2->setRowStatus(i,superBasic);
        for ( i=0;i<numberColumns;i++) {
          double distance = CoinMin(columnUpper[i]-primalSolution[i],
                              primalSolution[i]-columnLower[i]);
          if (distance>tolerance) {
            if (fabs(dualSolution[i])<1.0e-5)
            distance *= 100.0;
            dsort[n]=-distance;
            sort[n++]=i;
            model2->setStatus(i,superBasic);
          } else if (distance>primalTolerance_) {
            model2->setStatus(i,superBasic);
          } else if (primalSolution[i]<=columnLower[i]+primalTolerance_) {
            model2->setStatus(i,atLowerBound);
            primalSolution[i]=columnLower[i];
          } else {
            model2->setStatus(i,atUpperBound);
            primalSolution[i]=columnUpper[i];
          }
        }
        CoinSort_2(dsort,dsort+n,sort);
        n = CoinMin(numberRows,n);
        for ( i=0;i<n;i++) {
          int iColumn = sort[i];
          model2->setStatus(iColumn,basic);
        }
        delete [] sort;
        delete [] dsort;
        // model2->allSlackBasis();
        if (gap<1.0e-3*static_cast<double> (numberRows+numberColumns)) {
          if (saveUpper) {
            int numberRows = model2->numberRows();
            int numberColumns = model2->numberColumns();
            CoinMemcpyN(saveLower,numberColumns,model2->columnLower());
            CoinMemcpyN(saveLower+numberColumns,numberRows,model2->rowLower());
            CoinMemcpyN(saveUpper,numberColumns,model2->columnUpper());
            CoinMemcpyN(saveUpper+numberColumns,numberRows,model2->rowUpper());
            delete [] saveLower;
            delete [] saveUpper;
            saveLower=NULL;
            saveUpper=NULL;
          }
          int numberRows = model2->numberRows();
          int numberColumns = model2->numberColumns();
          // just primal values pass
          double saveScale = model2->objectiveScale();
          model2->setObjectiveScale(1.0e-3);
          model2->primal(2);
          model2->setObjectiveScale(saveScale);
          // save primal solution and copy back dual
          CoinMemcpyN(model2->primalRowSolution(),
                  numberRows,rowPrimal);
          CoinMemcpyN(rowDual,
                  numberRows,model2->dualRowSolution());
          CoinMemcpyN(model2->primalColumnSolution(),
                  numberColumns,columnPrimal);
          CoinMemcpyN(columnDual,
                  numberColumns,model2->dualColumnSolution());
          //model2->primal(1);
          // clean up reduced costs and flag variables
          {
            double * dj = model2->dualColumnSolution();
            double * cost = model2->objective();
            double * saveCost = new double[numberColumns];
            CoinMemcpyN(cost,numberColumns,saveCost);
            double * saveLower = new double[numberColumns];
            double * lower = model2->columnLower();
            CoinMemcpyN(lower,numberColumns,saveLower);
            double * saveUpper = new double[numberColumns];
            double * upper = model2->columnUpper();
            CoinMemcpyN(upper,numberColumns,saveUpper);
            int i;
            double tolerance = 10.0*dualTolerance_;
            for ( i=0;i<numberColumns;i++) {
            if (model2->getStatus(i)==basic) {
              dj[i]=0.0;
            } else if (model2->getStatus(i)==atLowerBound) {
              if (optimizationDirection_*dj[i]<tolerance) {
                if (optimizationDirection_*dj[i]<0.0) {
                  //if (dj[i]<-1.0e-3)
                  //printf("bad dj at lb %d %g\n",i,dj[i]);
                  cost[i] -= dj[i];
                  dj[i]=0.0;
                }
              } else {
                upper[i]=lower[i];
              }
            } else if (model2->getStatus(i)==atUpperBound) {
              if (optimizationDirection_*dj[i]>tolerance) {
                if (optimizationDirection_*dj[i]>0.0) {
                  //if (dj[i]>1.0e-3)
                  //printf("bad dj at ub %d %g\n",i,dj[i]);
                  cost[i] -= dj[i];
                  dj[i]=0.0;
                }
              } else {
                lower[i]=upper[i];
              }
            }
            }
            // just dual values pass
            //model2->setLogLevel(63);
            //model2->setFactorizationFrequency(1);
            model2->dual(2);
            CoinMemcpyN(saveCost,numberColumns,cost);
            delete [] saveCost;
            CoinMemcpyN(saveLower,numberColumns,lower);
            delete [] saveLower;
            CoinMemcpyN(saveUpper,numberColumns,upper);
            delete [] saveUpper;
          }
        }
        // and finish
        // move solutions
        CoinMemcpyN(rowPrimal,
                  numberRows,model2->primalRowSolution());
        CoinMemcpyN(columnPrimal,
                  numberColumns,model2->primalColumnSolution());
      }
      double saveScale = model2->objectiveScale();
      model2->setObjectiveScale(1.0e-3);
      model2->primal(2);
      model2->setObjectiveScale(saveScale);
      model2->primal(1);
#else
      // just primal
      model2->primal(1);
#endif
      } else if (barrierStatus==4) {
      // memory problems
      model2->setPerturbation(savePerturbation);
      model2->createStatus();
      model2->dual();
      } else if (maxIts&&quadraticObj) {
      // make sure no status left
      model2->createStatus();
      // solve
      model2->setPerturbation(100);
      model2->reducedGradient(1);
      }
    }
    
    //model2->setMaximumIterations(saveMaxIts);
#ifdef BORROW
    delete [] rowPrimal;
    delete [] columnPrimal;
    delete [] rowDual;
    delete [] columnDual;
#endif
    if (extraPresolve) {
      pinfo2.postsolve(true);
      delete model2;
      model2=saveModel2;
    }
    if (saveUpper) {
      if (!forceFixing) {
      int numberRows = model2->numberRows();
      int numberColumns = model2->numberColumns();
      CoinMemcpyN(saveLower,numberColumns,model2->columnLower());
      CoinMemcpyN(saveLower+numberColumns,numberRows,model2->rowLower());
      CoinMemcpyN(saveUpper,numberColumns,model2->columnUpper());
      CoinMemcpyN(saveUpper+numberColumns,numberRows,model2->rowUpper());
      }
      delete [] saveLower;
      delete [] saveUpper;
      saveLower=NULL;
      saveUpper=NULL;
      if (method!=ClpSolve::useBarrierNoCross) 
      model2->primal(1);
    }
    model2->setPerturbation(savePerturbation);
    time2 = CoinCpuTime();
    timeCore = time2-timeX;
    handler_->message(CLP_INTERVAL_TIMING,messages_)
      <<"Crossover"<<timeCore<<time2-time1
      <<CoinMessageEol;
    timeX=time2;
#else
    abort();
#endif
  } else {
    assert (method!=ClpSolve::automatic); // later
    time2=0.0;
  }
  if (saveMatrix) {
    if (model2==this) {
      // delete and replace
      delete model2->clpMatrix();
      model2->replaceMatrix(saveMatrix);
    } else {
      delete saveMatrix;
    }
  }
  numberIterations = model2->numberIterations();
  finalStatus=model2->status();
  int finalSecondaryStatus = model2->secondaryStatus();
  if (presolve==ClpSolve::presolveOn) {
    int saveLevel = logLevel();
    if ((specialOptions_&1024)==0)
      setLogLevel(CoinMin(1,saveLevel));
    else
      setLogLevel(CoinMin(0,saveLevel));
    pinfo.postsolve(true);
    factorization_->areaFactor(model2->factorization()->adjustedAreaFactor());
    time2 = CoinCpuTime();
    timePresolve += time2-timeX;
    handler_->message(CLP_INTERVAL_TIMING,messages_)
      <<"Postsolve"<<time2-timeX<<time2-time1
      <<CoinMessageEol;
    timeX=time2;
    if (!presolveToFile)
      delete model2;
    if (interrupt)
      currentModel = this;
    // checkSolution(); already done by postSolve
    setLogLevel(saveLevel);
    if (finalStatus!=3&&(finalStatus||status()==-1)) {
      int savePerturbation = perturbation();
      if (!finalStatus||(moreSpecialOptions_&2)==0) {
      if (finalStatus==2) {
        // unbounded - get feasible first
        double save = optimizationDirection_;
        optimizationDirection_=0.0;
        primal(1);
        optimizationDirection_=save;
        primal(1);
      } else if (finalStatus==1) {
        dual();
      } else {
        setPerturbation(100);
        primal(1);
      }
      } else {
      // just set status
      problemStatus_=finalStatus;
      }
      setPerturbation(savePerturbation);
      numberIterations += numberIterations_;
      numberIterations_ = numberIterations;
      finalStatus=status();
      time2 = CoinCpuTime();
      handler_->message(CLP_INTERVAL_TIMING,messages_)
      <<"Cleanup"<<time2-timeX<<time2-time1
      <<CoinMessageEol;
      timeX=time2;
    } else {
      secondaryStatus_=finalSecondaryStatus;
    }
  } else if (model2!=this) {
    // not presolved - but different model used (sprint probably)
    CoinMemcpyN(model2->primalRowSolution(),
            numberRows_,this->primalRowSolution());
    CoinMemcpyN(model2->dualRowSolution(),
            numberRows_,this->dualRowSolution());
    CoinMemcpyN(model2->primalColumnSolution(),
            numberColumns_,this->primalColumnSolution());
    CoinMemcpyN(model2->dualColumnSolution(),
            numberColumns_,this->dualColumnSolution());
    CoinMemcpyN(model2->statusArray(),
            numberColumns_+numberRows_,this->statusArray());
    objectiveValue_=model2->objectiveValue_;
    numberIterations_ =model2->numberIterations_;
    problemStatus_ =model2->problemStatus_;
    secondaryStatus_ =model2->secondaryStatus_;
    delete model2;
  }
  if (method!=ClpSolve::useBarrierNoCross&&
      method!=ClpSolve::useBarrier)
    setMaximumIterations(saveMaxIterations);
  std::string statusMessage[]={"Unknown","Optimal","PrimalInfeasible","DualInfeasible","Stopped",
                         "Errors","User stopped"};
  assert (finalStatus>=-1&&finalStatus<=5);
  handler_->message(CLP_TIMING,messages_)
    <<statusMessage[finalStatus+1]<<objectiveValue()<<numberIterations<<time2-time1;
  handler_->printing(presolve==ClpSolve::presolveOn)
    <<timePresolve;
  handler_->printing(timeIdiot!=0.0)
    <<timeIdiot;
  handler_->message()<<CoinMessageEol;
  if (interrupt) 
    signal(SIGINT,saveSignal);
  perturbation_=savePerturbation;
  scalingFlag_=saveScaling;
  // If faking objective - put back correct one
  if (savedObjective) {
    delete objective_;
    objective_=savedObjective;
  }
  if (options.getSpecialOption(1)==2&&
      options.getExtraInfo(1)>1000000) {
    ClpObjective * savedObjective=objective_;
    // make up zero objective
    double * obj = new double[numberColumns_];
    for (int i=0;i<numberColumns_;i++) 
      obj[i]=0.0;
    objective_= new ClpLinearObjective(obj,numberColumns_);
    delete [] obj;
    primal(1);
    delete objective_;
    objective_=savedObjective;
    finalStatus=status();
  }
  return finalStatus;
}
// General solve
int 
02557 ClpSimplex::initialSolve()
{
  // Default so use dual
  ClpSolve options;
  return initialSolve(options);
}
// General dual solve
int 
02565 ClpSimplex::initialDualSolve()
{
  ClpSolve options;
  // Use dual
  options.setSolveType(ClpSolve::useDual);
  return initialSolve(options);
}
// General dual solve
int 
02574 ClpSimplex::initialPrimalSolve()
{
  ClpSolve options;
  // Use primal
  options.setSolveType(ClpSolve::usePrimal);
  return initialSolve(options);
}
// barrier solve, not to be followed by crossover
int 
02583 ClpSimplex::initialBarrierNoCrossSolve()
{
  ClpSolve options;
  // Use primal
  options.setSolveType(ClpSolve::useBarrierNoCross);
  return initialSolve(options);
}

// General barrier solve
int 
02593 ClpSimplex::initialBarrierSolve()
{
  ClpSolve options;
  // Use primal
  options.setSolveType(ClpSolve::useBarrier);
  return initialSolve(options);
}

// Default constructor
02602 ClpSolve::ClpSolve (  )
{
  method_ = automatic;
  presolveType_=presolveOn;
  numberPasses_=5;
  int i;
  for (i=0;i<7;i++)
    options_[i]=0;
  // say no +-1 matrix
  options_[3]=1;
  for (i=0;i<7;i++)
    extraInfo_[i]=-1;
  independentOptions_[0]=0;
  // But switch off slacks
  independentOptions_[1]=512;
  // Substitute up to 3
  independentOptions_[2]=3;
  
}
// Constructor when you really know what you are doing
02622 ClpSolve::ClpSolve ( SolveType method, PresolveType presolveType,
             int numberPasses, int options[6],
             int extraInfo[6], int independentOptions[3])
{
  method_ = method;
  presolveType_=presolveType;
  numberPasses_=numberPasses;
  int i;
  for (i=0;i<6;i++)
    options_[i]=options[i];
  options_[6]=0;
  for (i=0;i<6;i++)
    extraInfo_[i]=extraInfo[i];
  extraInfo_[6]=0;
  for (i=0;i<3;i++)
    independentOptions_[i]=independentOptions[i];
}

// Copy constructor. 
02641 ClpSolve::ClpSolve(const ClpSolve & rhs)
{
  method_ = rhs.method_;
  presolveType_=rhs.presolveType_;
  numberPasses_=rhs.numberPasses_;
  int i;
  for ( i=0;i<7;i++)
    options_[i]=rhs.options_[i];
  for ( i=0;i<7;i++)
    extraInfo_[i]=rhs.extraInfo_[i];
  for (i=0;i<3;i++)
    independentOptions_[i]=rhs.independentOptions_[i];
}
// Assignment operator. This copies the data
ClpSolve & 
02656 ClpSolve::operator=(const ClpSolve & rhs)
{
  if (this != &rhs) {
    method_ = rhs.method_;
    presolveType_=rhs.presolveType_;
    numberPasses_=rhs.numberPasses_;
    int i;
    for (i=0;i<7;i++)
      options_[i]=rhs.options_[i];
    for (i=0;i<7;i++)
      extraInfo_[i]=rhs.extraInfo_[i];
    for (i=0;i<3;i++)
      independentOptions_[i]=rhs.independentOptions_[i];
  }
  return *this;

}
// Destructor
02674 ClpSolve::~ClpSolve (  )
{
}
// See header file for deatils
void 
02679 ClpSolve::setSpecialOption(int which,int value,int extraInfo)
{
  options_[which]=value;
  extraInfo_[which]=extraInfo;
}
int 
ClpSolve::getSpecialOption(int which) const
{
  return options_[which];
}

// Solve types
void 
02692 ClpSolve::setSolveType(SolveType method, int /*extraInfo*/)
{
  method_=method;
}

ClpSolve::SolveType 
ClpSolve::getSolveType()
{
  return method_;
}

// Presolve types
void 
ClpSolve::setPresolveType(PresolveType amount, int extraInfo)
{
  presolveType_=amount;
  numberPasses_=extraInfo;
}
ClpSolve::PresolveType 
ClpSolve::getPresolveType()
{
  return presolveType_;
}
// Extra info for idiot (or sprint)
int 
02717 ClpSolve::getExtraInfo(int which) const
{
  return extraInfo_[which];
}
int 
ClpSolve::getPresolvePasses() const
{
  return numberPasses_;
}
/* Say to return at once if infeasible,
   default is to solve */
void 
02729 ClpSolve::setInfeasibleReturn(bool trueFalse)
{
  independentOptions_[0]= trueFalse ? 1 : 0;
}
#include <string>
// Generates code for above constructor
void 
02736 ClpSolve::generateCpp(FILE * fp)
{
  std::string solveType[] = {
    "ClpSolve::useDual",
    "ClpSolve::usePrimal",
    "ClpSolve::usePrimalorSprint",
    "ClpSolve::useBarrier",
    "ClpSolve::useBarrierNoCross",
    "ClpSolve::automatic",
    "ClpSolve::notImplemented"
  };
  std::string presolveType[] =  {
    "ClpSolve::presolveOn",
    "ClpSolve::presolveOff",
    "ClpSolve::presolveNumber",
    "ClpSolve::presolveNumberCost"
  };
  fprintf(fp,"3  ClpSolve::SolveType method = %s;\n",solveType[method_].c_str());
  fprintf(fp,"3  ClpSolve::PresolveType presolveType = %s;\n",
    presolveType[presolveType_].c_str());
  fprintf(fp,"3  int numberPasses = %d;\n",numberPasses_);
  fprintf(fp,"3  int options[] = {%d,%d,%d,%d,%d,%d};\n",
    options_[0],options_[1],options_[2],
    options_[3],options_[4],options_[5]);
  fprintf(fp,"3  int extraInfo[] = {%d,%d,%d,%d,%d,%d};\n",
    extraInfo_[0],extraInfo_[1],extraInfo_[2],
    extraInfo_[3],extraInfo_[4],extraInfo_[5]);
  fprintf(fp,"3  int independentOptions[] = {%d,%d,%d};\n",
    independentOptions_[0],independentOptions_[1],independentOptions_[2]);
  fprintf(fp,"3  ClpSolve clpSolve(method,presolveType,numberPasses,\n");
  fprintf(fp,"3                    options,extraInfo,independentOptions);\n");
}
//#############################################################################
#include "ClpNonLinearCost.hpp"

02771 ClpSimplexProgress::ClpSimplexProgress () 
{
  int i;
  for (i=0;i<CLP_PROGRESS;i++) {
    objective_[i] = COIN_DBL_MAX;
    infeasibility_[i] = -1.0; // set to an impossible value
    realInfeasibility_[i] = COIN_DBL_MAX;
    numberInfeasibilities_[i]=-1; 
    iterationNumber_[i]=-1;
  }
#ifdef CLP_PROGRESS_WEIGHT
  for (i=0;i<CLP_PROGRESS_WEIGHT;i++) {
    objectiveWeight_[i] = COIN_DBL_MAX;
    infeasibilityWeight_[i] = -1.0; // set to an impossible value
    realInfeasibilityWeight_[i] = COIN_DBL_MAX;
    numberInfeasibilitiesWeight_[i]=-1; 
    iterationNumberWeight_[i]=-1;
  }
  drop_ =0.0;
  best_ =0.0;
#endif
  initialWeight_=0.0;
  for (i=0;i<CLP_CYCLE;i++) {
    //obj_[i]=COIN_DBL_MAX;
    in_[i]=-1;
    out_[i]=-1;
    way_[i]=0;
  }
  numberTimes_ = 0;
  numberBadTimes_ = 0;
  numberReallyBadTimes_ = 0;
  numberTimesFlagged_ = 0;
  model_ = NULL;
  oddState_=0;
}


//-----------------------------------------------------------------------------

02810 ClpSimplexProgress::~ClpSimplexProgress ()
{
}
// Copy constructor. 
02814 ClpSimplexProgress::ClpSimplexProgress(const ClpSimplexProgress &rhs) 
{
  int i;
  for (i=0;i<CLP_PROGRESS;i++) {
    objective_[i] = rhs.objective_[i];
    infeasibility_[i] = rhs.infeasibility_[i];
    realInfeasibility_[i] = rhs.realInfeasibility_[i];
    numberInfeasibilities_[i]=rhs.numberInfeasibilities_[i]; 
    iterationNumber_[i]=rhs.iterationNumber_[i];
  }
#ifdef CLP_PROGRESS_WEIGHT
  for (i=0;i<CLP_PROGRESS_WEIGHT;i++) {
    objectiveWeight_[i] = rhs.objectiveWeight_[i];
    infeasibilityWeight_[i] = rhs.infeasibilityWeight_[i];
    realInfeasibilityWeight_[i] = rhs.realInfeasibilityWeight_[i];
    numberInfeasibilitiesWeight_[i]=rhs.numberInfeasibilitiesWeight_[i]; 
    iterationNumberWeight_[i]=rhs.iterationNumberWeight_[i];
  }
  drop_ = rhs.drop_;
  best_ = rhs.best_;
#endif
  initialWeight_ = rhs.initialWeight_;
  for (i=0;i<CLP_CYCLE;i++) {
    //obj_[i]=rhs.obj_[i];
    in_[i]=rhs.in_[i];
    out_[i]=rhs.out_[i];
    way_[i]=rhs.way_[i];
  }
  numberTimes_ = rhs.numberTimes_;
  numberBadTimes_ = rhs.numberBadTimes_;
  numberReallyBadTimes_ = rhs.numberReallyBadTimes_;
  numberTimesFlagged_ = rhs.numberTimesFlagged_;
  model_ = rhs.model_;
  oddState_=rhs.oddState_;
}
// Copy constructor.from model
02850 ClpSimplexProgress::ClpSimplexProgress(ClpSimplex * model) 
{
  model_ = model;
  reset();
  initialWeight_=0.0;
}
// Fill from model
void 
02858 ClpSimplexProgress::fillFromModel ( ClpSimplex * model )
{
  model_ = model;
  reset();
  initialWeight_=0.0;
}
// Assignment operator. This copies the data
ClpSimplexProgress & 
02866 ClpSimplexProgress::operator=(const ClpSimplexProgress & rhs)
{
  if (this != &rhs) {
    int i;
    for (i=0;i<CLP_PROGRESS;i++) {
      objective_[i] = rhs.objective_[i];
      infeasibility_[i] = rhs.infeasibility_[i];
      realInfeasibility_[i] = rhs.realInfeasibility_[i];
      numberInfeasibilities_[i]=rhs.numberInfeasibilities_[i]; 
      iterationNumber_[i]=rhs.iterationNumber_[i];
    }
#ifdef CLP_PROGRESS_WEIGHT
    for (i=0;i<CLP_PROGRESS_WEIGHT;i++) {
      objectiveWeight_[i] = rhs.objectiveWeight_[i];
      infeasibilityWeight_[i] = rhs.infeasibilityWeight_[i];
      realInfeasibilityWeight_[i] = rhs.realInfeasibilityWeight_[i];
      numberInfeasibilitiesWeight_[i]=rhs.numberInfeasibilitiesWeight_[i]; 
      iterationNumberWeight_[i]=rhs.iterationNumberWeight_[i];
    }
    drop_ = rhs.drop_;
    best_ = rhs.best_;
#endif
    initialWeight_ = rhs.initialWeight_;
    for (i=0;i<CLP_CYCLE;i++) {
      //obj_[i]=rhs.obj_[i];
      in_[i]=rhs.in_[i];
      out_[i]=rhs.out_[i];
      way_[i]=rhs.way_[i];
    }
    numberTimes_ = rhs.numberTimes_;
    numberBadTimes_ = rhs.numberBadTimes_;
    numberReallyBadTimes_ = rhs.numberReallyBadTimes_;
    numberTimesFlagged_ = rhs.numberTimesFlagged_;
    model_ = rhs.model_;
    oddState_=rhs.oddState_;
  }
  return *this;
}
// Seems to be something odd about exact comparison of doubles on linux
static bool equalDouble(double value1, double value2)
{

  union { double d; int i[2]; } v1,v2;
  v1.d = value1;
  v2.d = value2;
  if (sizeof(int)*2==sizeof(double)) 
    return (v1.i[0]==v2.i[0]&&v1.i[1]==v2.i[1]);
  else
    return (v1.i[0]==v2.i[0]);
}
int
02917 ClpSimplexProgress::looping()
{
  if (!model_)
    return -1;
  double objective = model_->rawObjectiveValue();
  if (model_->algorithm()<0)
    objective -= model_->bestPossibleImprovement();
  double infeasibility;
  double realInfeasibility=0.0;
  int numberInfeasibilities;
  int iterationNumber = model_->numberIterations();
  numberTimesFlagged_=0;
  if (model_->algorithm()<0) {
    // dual
    infeasibility = model_->sumPrimalInfeasibilities();
    numberInfeasibilities = model_->numberPrimalInfeasibilities();
  } else {
    //primal
    infeasibility = model_->sumDualInfeasibilities();
    realInfeasibility = model_->nonLinearCost()->sumInfeasibilities();
    numberInfeasibilities = model_->numberDualInfeasibilities();
  }
  int i;
  int numberMatched=0;
  int matched=0;
  int nsame=0;
  for (i=0;i<CLP_PROGRESS;i++) {
    bool matchedOnObjective = equalDouble(objective,objective_[i]);
    bool matchedOnInfeasibility = equalDouble(infeasibility,infeasibility_[i]);
    bool matchedOnInfeasibilities = 
      (numberInfeasibilities==numberInfeasibilities_[i]);
    
    if (matchedOnObjective&&matchedOnInfeasibility&&matchedOnInfeasibilities) {
      matched |= (1<<i);
      // Check not same iteration
      if (iterationNumber!=iterationNumber_[i]) {
      numberMatched++;
      // here mainly to get over compiler bug?
      if (model_->messageHandler()->logLevel()>10)
        printf("%d %d %d %d %d loop check\n",i,numberMatched,
             matchedOnObjective, matchedOnInfeasibility, 
             matchedOnInfeasibilities);
      } else {
      // stuck but code should notice
      nsame++;
      }
    }
    if (i) {
      objective_[i-1] = objective_[i];
      infeasibility_[i-1] = infeasibility_[i];
      realInfeasibility_[i-1] = realInfeasibility_[i];
      numberInfeasibilities_[i-1]=numberInfeasibilities_[i]; 
      iterationNumber_[i-1]=iterationNumber_[i];
    }
  }
  objective_[CLP_PROGRESS-1] = objective;
  infeasibility_[CLP_PROGRESS-1] = infeasibility;
  realInfeasibility_[CLP_PROGRESS-1] = realInfeasibility;
  numberInfeasibilities_[CLP_PROGRESS-1]=numberInfeasibilities;
  iterationNumber_[CLP_PROGRESS-1]=iterationNumber;
  if (nsame==CLP_PROGRESS)
    numberMatched=CLP_PROGRESS; // really stuck
  if (model_->progressFlag())
    numberMatched=0;
  numberTimes_++;
  if (numberTimes_<10)
    numberMatched=0;
  // skip if just last time as may be checking something
  if (matched==(1<<(CLP_PROGRESS-1)))
    numberMatched=0;
  if (numberMatched) {
    model_->messageHandler()->message(CLP_POSSIBLELOOP,model_->messages())
      <<numberMatched
      <<matched
      <<numberTimes_
      <<CoinMessageEol;
    numberBadTimes_++;
    if (numberBadTimes_<10) {
      // make factorize every iteration
      model_->forceFactorization(1);
      if (numberBadTimes_<2) {
      startCheck(); // clear other loop check
      if (model_->algorithm()<0) {
        // dual - change tolerance
        model_->setCurrentDualTolerance(model_->currentDualTolerance()*1.05);
        // if infeasible increase dual bound
        if (model_->dualBound()<1.0e17) {
          model_->setDualBound(model_->dualBound()*1.1);
          static_cast<ClpSimplexDual *>(model_)->resetFakeBounds(0);
        }
      } else {
        // primal - change tolerance
        if (numberBadTimes_>3)
          model_->setCurrentPrimalTolerance(model_->currentPrimalTolerance()*1.05);
        // if infeasible increase infeasibility cost
        if (model_->nonLinearCost()->numberInfeasibilities()&&
            model_->infeasibilityCost()<1.0e17) {
          model_->setInfeasibilityCost(model_->infeasibilityCost()*1.1);
        }
      }
      } else {
      // flag
      int iSequence;
      if (model_->algorithm()<0) {
        // dual
        if (model_->dualBound()>1.0e14) 
          model_->setDualBound(1.0e14);
        iSequence=in_[CLP_CYCLE-1];
      } else {
        // primal 
        if (model_->infeasibilityCost()>1.0e14) 
          model_->setInfeasibilityCost(1.0e14);
        iSequence=out_[CLP_CYCLE-1];
      }
      if (iSequence>=0) {
        char x = model_->isColumn(iSequence) ? 'C' :'R';
        if (model_->messageHandler()->logLevel()>=63)
          model_->messageHandler()->message(CLP_SIMPLEX_FLAG,model_->messages())
            <<x<<model_->sequenceWithin(iSequence)
            <<CoinMessageEol;
          // if Gub then needs to be sequenceIn_
          int save=model_->sequenceIn();
          model_->setSequenceIn(iSequence);
        model_->setFlagged(iSequence);
          model_->setSequenceIn(save);
        //printf("flagging %d from loop\n",iSequence);
        startCheck();
      } else {
        // Give up
        if (model_->messageHandler()->logLevel()>=63)
          printf("***** All flagged?\n");
        return 4;
      }
      // reset
      numberBadTimes_=2;
      }
      return -2;
    } else {
      // look at solution and maybe declare victory
      if (infeasibility<1.0e-4) {
      return 0;
      } else {
      model_->messageHandler()->message(CLP_LOOP,model_->messages())
        <<CoinMessageEol;
#ifndef NDEBUG
        printf("debug loop ClpSimplex A\n");
      abort();
#endif
      return 3;
      }
    }
  }
  return -1;
}
// Resets as much as possible
void 
03073 ClpSimplexProgress::reset()
{
  int i;
  for (i=0;i<CLP_PROGRESS;i++) {
    if (model_->algorithm()>=0)
      objective_[i] = COIN_DBL_MAX;
    else
      objective_[i] = -COIN_DBL_MAX;
    infeasibility_[i] = -1.0; // set to an impossible value
    realInfeasibility_[i] = COIN_DBL_MAX;
    numberInfeasibilities_[i]=-1; 
    iterationNumber_[i]=-1;
  }
#ifdef CLP_PROGRESS_WEIGHT
  for (i=0;i<CLP_PROGRESS_WEIGHT;i++) {
    objectiveWeight_[i] = COIN_DBL_MAX;
    infeasibilityWeight_[i] = -1.0; // set to an impossible value
    realInfeasibilityWeight_[i] = COIN_DBL_MAX;
    numberInfeasibilitiesWeight_[i]=-1; 
    iterationNumberWeight_[i]=-1;
  }
  drop_ =0.0;
  best_ =0.0;
#endif
  for (i=0;i<CLP_CYCLE;i++) {
    //obj_[i]=COIN_DBL_MAX;
    in_[i]=-1;
    out_[i]=-1;
    way_[i]=0;
  }
  numberTimes_ = 0;
  numberBadTimes_ = 0;
  numberReallyBadTimes_ = 0;
  numberTimesFlagged_ = 0;
  oddState_=0;
}
// Returns previous objective (if -1) - current if (0)
double 
03111 ClpSimplexProgress::lastObjective(int back) const
{
  return objective_[CLP_PROGRESS-1-back];
}
// Returns previous infeasibility (if -1) - current if (0)
double 
03117 ClpSimplexProgress::lastInfeasibility(int back) const
{
  return realInfeasibility_[CLP_PROGRESS-1-back];
}
// Sets real primal infeasibility
void
03123 ClpSimplexProgress::setInfeasibility(double value)
{
  for (int i=1;i<CLP_PROGRESS;i++) 
    realInfeasibility_[i-1] = realInfeasibility_[i];
  realInfeasibility_[CLP_PROGRESS-1]=value;
}
// Modify objective e.g. if dual infeasible in dual
void 
03131 ClpSimplexProgress::modifyObjective(double value)
{
  objective_[CLP_PROGRESS-1]=value;
}
// Returns previous iteration number (if -1) - current if (0)
int 
03137 ClpSimplexProgress::lastIterationNumber(int back) const
{
  return iterationNumber_[CLP_PROGRESS-1-back];
}
// clears iteration numbers (to switch off panic)
void 
03143 ClpSimplexProgress::clearIterationNumbers()
{
  for (int i=0;i<CLP_PROGRESS;i++) 
    iterationNumber_[i]=-1;
}
// Start check at beginning of whileIterating
void 
03150 ClpSimplexProgress::startCheck()
{
  int i;
  for (i=0;i<CLP_CYCLE;i++) {
    //obj_[i]=COIN_DBL_MAX;
    in_[i]=-1;
    out_[i]=-1;
    way_[i]=0;
  }
}
// Returns cycle length in whileIterating
int 
03162 ClpSimplexProgress::cycle(int in, int out,int wayIn,int wayOut)
{
  int i;
#if 0
  if (model_->numberIterations()>206571) {
    printf("in %d out %d\n",in,out);
    for (i=0;i<CLP_CYCLE;i++) 
      printf("cy %d in %d out %d\n",i,in_[i],out_[i]);
  }
#endif
  int matched=0;
  // first see if in matches any out
  for (i=1;i<CLP_CYCLE;i++) {
    if (in==out_[i]) {
      // even if flip then suspicious
      matched=-1;
      break;
    }
  }
#if 0
  if (!matched||in_[0]<0) {
    // can't be cycle
    for (i=0;i<CLP_CYCLE-1;i++) {
      //obj_[i]=obj_[i+1];
      in_[i]=in_[i+1];
      out_[i]=out_[i+1];
      way_[i]=way_[i+1];
    }
  } else {
    // possible cycle
    matched=0;
    for (i=0;i<CLP_CYCLE-1;i++) {
      int k;
      char wayThis = way_[i];
      int inThis = in_[i];
      int outThis = out_[i];
      //double objThis = obj_[i];
      for(k=i+1;k<CLP_CYCLE;k++) {
      if (inThis==in_[k]&&outThis==out_[k]&&wayThis==way_[k]) {
        int distance = k-i;
        if (k+distance<CLP_CYCLE) {
          // See if repeats
          int j=k+distance;
          if (inThis==in_[j]&&outThis==out_[j]&&wayThis==way_[j]) {
            matched=distance;
            break;
          }
        } else {
          matched=distance;
          break;
        }
      }
      }
      //obj_[i]=obj_[i+1];
      in_[i]=in_[i+1];
      out_[i]=out_[i+1];
      way_[i]=way_[i+1];
    }
  }
#else
  if (matched&&in_[0]>=0) {
    // possible cycle - only check [0] against all
    matched=0;
    int nMatched=0;
    char way0 = way_[0];
    int in0 = in_[0];
    int out0 = out_[0];
    //double obj0 = obj_[i];
    for(int k=1;k<CLP_CYCLE-4;k++) {
      if (in0==in_[k]&&out0==out_[k]&&way0==way_[k]) {
      nMatched++;
      // See if repeats
      int end = CLP_CYCLE-k;
      int j;
      for ( j=1;j<end;j++) {
        if (in_[j+k]!=in_[j]||out_[j+k]!=out_[j]||way_[j+k]!=way_[j]) 
          break;
      }
      if (j==end) {
        matched=k;
        break;
      }
      }
    }
    // If three times then that is too much even if not regular
    if (matched<=0&&nMatched>1)
      matched=100;
  }
  for (i=0;i<CLP_CYCLE-1;i++) {
    //obj_[i]=obj_[i+1];
    in_[i]=in_[i+1];
    out_[i]=out_[i+1];
    way_[i]=way_[i+1];
  }
#endif
  int way = 1-wayIn+4*(1-wayOut);
  //obj_[i]=model_->objectiveValue();
  in_[CLP_CYCLE-1]=in;
  out_[CLP_CYCLE-1]=out;
  way_[CLP_CYCLE-1]=static_cast<char>(way);
  return matched;
}
#include "CoinStructuredModel.hpp"
// Solve using structure of model and maybe in parallel
int 
03267 ClpSimplex::solve(CoinStructuredModel * model)
{
  // analyze structure
  int numberRowBlocks=model->numberRowBlocks();
  int numberColumnBlocks = model->numberColumnBlocks();
  int numberElementBlocks = model->numberElementBlocks();
  if (numberElementBlocks==1) {
    loadProblem(*model,false);
    return dual();
  }
  // For now just get top level structure
  CoinModelBlockInfo * blockInfo = new CoinModelBlockInfo [numberElementBlocks];
  for (int i=0;i<numberElementBlocks;i++) {
    CoinStructuredModel * subModel = 
      dynamic_cast<CoinStructuredModel *>(model->block(i));
    CoinModel * thisBlock;
    if (subModel) {
      thisBlock=subModel->coinModelBlock(blockInfo[i]);
      model->setCoinModel(thisBlock,i);
    } else {
      thisBlock = dynamic_cast<CoinModel *>(model->block(i));
      assert (thisBlock);
      // just fill in info
      CoinModelBlockInfo info = CoinModelBlockInfo();
      int whatsSet = thisBlock->whatIsSet();
      info.matrix = static_cast<char>(((whatsSet&1)!=0) ? 1 : 0);
      info.rhs = static_cast<char>(((whatsSet&2)!=0) ? 1 : 0);
      info.rowName = static_cast<char>(((whatsSet&4)!=0) ? 1 : 0);
      info.integer = static_cast<char>(((whatsSet&32)!=0) ? 1 : 0);
      info.bounds = static_cast<char>(((whatsSet&8)!=0) ? 1 : 0);
      info.columnName = static_cast<char>(((whatsSet&16)!=0) ? 1 : 0);
      // Which block
      int iRowBlock=model->rowBlock(thisBlock->getRowBlock());
      info.rowBlock=iRowBlock;
      int iColumnBlock=model->columnBlock(thisBlock->getColumnBlock());
      info.columnBlock=iColumnBlock;
      blockInfo[i] = info;
    }
  }
  int * rowCounts = new int [numberRowBlocks];
  CoinZeroN(rowCounts,numberRowBlocks);
  int * columnCounts = new int [numberColumnBlocks+1];
  CoinZeroN(columnCounts,numberColumnBlocks);
  int decomposeType=0;
  for (int i=0;i<numberElementBlocks;i++) {
    int iRowBlock = blockInfo[i].rowBlock;
    int iColumnBlock = blockInfo[i].columnBlock;
    rowCounts[iRowBlock]++;
    columnCounts[iColumnBlock]++;
  }
  if (numberRowBlocks==numberColumnBlocks||
      numberRowBlocks==numberColumnBlocks+1) {
    // could be Dantzig-Wolfe
    int numberG1=0;
    for (int i=0;i<numberRowBlocks;i++) {
      if (rowCounts[i]>1)
      numberG1++;
    }
    bool masterColumns = (numberColumnBlocks==numberRowBlocks);
    if ((masterColumns&&numberElementBlocks==2*numberRowBlocks-1)
      ||(!masterColumns&&numberElementBlocks==2*numberRowBlocks)) {
      if (numberG1<2)
      decomposeType=1;
    }
  }
  if (!decomposeType&&(numberRowBlocks==numberColumnBlocks||
                   numberRowBlocks==numberColumnBlocks-1)) {
    // could be Benders
    int numberG1=0;
    for (int i=0;i<numberColumnBlocks;i++) {
      if (columnCounts[i]>1)
      numberG1++;
    }
    bool masterRows = (numberColumnBlocks==numberRowBlocks);
    if ((masterRows&&numberElementBlocks==2*numberColumnBlocks-1)
      ||(!masterRows&&numberElementBlocks==2*numberColumnBlocks)) {
      if (numberG1<2)
      decomposeType=2;
    }
  }
  delete [] rowCounts;
  delete [] columnCounts;
  delete [] blockInfo;
  // decide what to do
  switch (decomposeType) {
    // No good
  case 0:
    loadProblem(*model,false);
    return dual();
    // DW
  case 1:
    return solveDW(model);
    // Benders
  case 2:
    return solveBenders(model);
  }
  return 0; // to stop compiler warning
}
/* This loads a model from a CoinStructuredModel object - returns number of errors.
   If originalOrder then keep to order stored in blocks,
   otherwise first column/rows correspond to first block - etc.
   If keepSolution true and size is same as current then
   keeps current status and solution
*/
int 
03372 ClpSimplex::loadProblem (  CoinStructuredModel & coinModel,
                     bool originalOrder,
                     bool keepSolution)
{
  unsigned char * status = NULL;
  double * psol = NULL;
  double * dsol = NULL;
  int numberRows=coinModel.numberRows();
  int numberColumns = coinModel.numberColumns();
  int numberRowBlocks=coinModel.numberRowBlocks();
  int numberColumnBlocks = coinModel.numberColumnBlocks();
  int numberElementBlocks = coinModel.numberElementBlocks();
  if (status_&&numberRows_&&numberRows_==numberRows&&
      numberColumns_==numberColumns&&keepSolution) {
    status = new unsigned char [numberRows_+numberColumns_];
    CoinMemcpyN(status_,numberRows_+numberColumns_,status);
    psol = new double [numberRows_+numberColumns_];
    CoinMemcpyN(columnActivity_,numberColumns_,psol);
    CoinMemcpyN(rowActivity_,numberRows_,psol+numberColumns_);
    dsol = new double [numberRows_+numberColumns_];
    CoinMemcpyN(reducedCost_,numberColumns_,dsol);
    CoinMemcpyN(dual_,numberRows_,dsol+numberColumns_);
  }
  int returnCode=0;
  double * rowLower = new double [numberRows];
  double * rowUpper = new double [numberRows];
  double * columnLower = new double [numberColumns];
  double * columnUpper = new double [numberColumns];
  double * objective = new double [numberColumns];
  int * integerType = new int [numberColumns];
  CoinBigIndex numberElements=0;
  // Bases for blocks
  int * rowBase = new int[numberRowBlocks];
  CoinFillN(rowBase,numberRowBlocks,-1);
  // And row to put it
  int * whichRow = new int [numberRows];
  int * columnBase = new int[numberColumnBlocks];
  CoinFillN(columnBase,numberColumnBlocks,-1);
  // And column to put it
  int * whichColumn = new int [numberColumns];
  for (int iBlock=0;iBlock<numberElementBlocks;iBlock++) {
    CoinModel * block = coinModel.coinBlock(iBlock);
    numberElements += block->numberElements();
    //and set up elements etc
    double * associated = block->associatedArray();
    // If strings then do copies
    if (block->stringsExist()) 
      returnCode += block->createArrays(rowLower, rowUpper, columnLower, columnUpper,
                                objective, integerType,associated);
    const CoinModelBlockInfo & info = coinModel.blockType(iBlock);
    int iRowBlock = info.rowBlock;
    int iColumnBlock = info.columnBlock;
    if (rowBase[iRowBlock]<0) {
      rowBase[iRowBlock]=block->numberRows();
      // Save block number
      whichRow[numberRows-numberRowBlocks+iRowBlock]= iBlock;
    } else {
      assert(rowBase[iRowBlock]==block->numberRows());
    }
    if (columnBase[iColumnBlock]<0) {
      columnBase[iColumnBlock]=block->numberColumns();
      // Save block number
      whichColumn[numberColumns-numberColumnBlocks+iColumnBlock]= iBlock;
    } else {
      assert(columnBase[iColumnBlock]==block->numberColumns());
    }
  }
  // Fill arrays with defaults
  CoinFillN(rowLower,numberRows,-COIN_DBL_MAX);
  CoinFillN(rowUpper,numberRows,COIN_DBL_MAX);
  CoinFillN(columnLower,numberColumns,0.0);
  CoinFillN(columnUpper,numberColumns,COIN_DBL_MAX);
  CoinFillN(objective,numberColumns,0.0);
  CoinFillN(integerType,numberColumns,0);
  int n=0;
  for (int iBlock=0;iBlock<numberRowBlocks;iBlock++) {
    int k = rowBase[iBlock];
    rowBase[iBlock]=n;
    assert (k>=0);
    // block number
    int jBlock = whichRow[numberRows-numberRowBlocks+iBlock];
    if (originalOrder) {
      memcpy(whichRow+n,coinModel.coinBlock(jBlock)->originalRows(),k*sizeof(int));
    } else {
      CoinIotaN(whichRow+n,k,n);
    }
    n+=k;
  }
  assert (n==numberRows);
  n=0;
  for (int iBlock=0;iBlock<numberColumnBlocks;iBlock++) {
    int k = columnBase[iBlock];
    columnBase[iBlock]=n;
    assert (k>=0);
    if (k) {
      // block number
      int jBlock = whichColumn[numberColumns-numberColumnBlocks+iBlock];
      if (originalOrder) {
      memcpy(whichColumn+n,coinModel.coinBlock(jBlock)->originalColumns(),
             k*sizeof(int));
      } else {
      CoinIotaN(whichColumn+n,k,n);
      }
      n+=k;
    }
  }
  assert (n==numberColumns);
  bool gotIntegers=false;
  for (int iBlock=0;iBlock<numberElementBlocks;iBlock++) {
    CoinModel * block = coinModel.coinBlock(iBlock);
    const CoinModelBlockInfo & info = coinModel.blockType(iBlock);
    int iRowBlock = info.rowBlock;
    int iRowBase = rowBase[iRowBlock];
    int iColumnBlock = info.columnBlock;
    int iColumnBase = columnBase[iColumnBlock];
    if (info.rhs) {
      int nRows = block->numberRows();
      const double * lower = block->rowLowerArray();
      const double * upper = block->rowUpperArray();
      for (int i=0;i<nRows;i++) {
      int put = whichRow[i+iRowBase];
      rowLower[put] = lower[i];
      rowUpper[put] = upper[i];
      }
    }
    if (info.bounds) {
      int nColumns = block->numberColumns();
      const double * lower = block->columnLowerArray();
      const double * upper = block->columnUpperArray();
      const double * obj = block->objectiveArray();
      for (int i=0;i<nColumns;i++) {
      int put = whichColumn[i+iColumnBase];
      columnLower[put] = lower[i];
      columnUpper[put] = upper[i];
      objective[put] = obj[i];
      }
    }
    if (info.integer) {
      gotIntegers=true;
      int nColumns = block->numberColumns();
      const int * type = block->integerTypeArray();
      for (int i=0;i<nColumns;i++) {
      int put = whichColumn[i+iColumnBase];
      integerType[put] = type[i];
      }
    }
  }
  gutsOfLoadModel(numberRows, numberColumns,
              columnLower, columnUpper, objective, rowLower, rowUpper, NULL);
  delete [] rowLower;
  delete [] rowUpper;
  delete [] columnLower;
  delete [] columnUpper;
  delete [] objective;
  // Do integers if wanted
  if (gotIntegers) {
    for (int iColumn=0;iColumn<numberColumns;iColumn++) {
      if (integerType[iColumn])
      setInteger(iColumn);
    }
  }
  delete [] integerType;
  setObjectiveOffset(coinModel.objectiveOffset());
  // Space for elements
  int * row = new int[numberElements];
  int * column = new int[numberElements];
  double * element = new double[numberElements];
  numberElements=0;
  for (int iBlock=0;iBlock<numberElementBlocks;iBlock++) {
    CoinModel * block = coinModel.coinBlock(iBlock);
    const CoinModelBlockInfo & info = coinModel.blockType(iBlock);
    int iRowBlock = info.rowBlock;
    int iRowBase = rowBase[iRowBlock];
    int iColumnBlock = info.columnBlock;
    int iColumnBase = columnBase[iColumnBlock];
    if (info.rowName) {
      int numberItems = block->rowNames()->numberItems();
      assert( block->numberRows()>=numberItems);
      if (numberItems) {
      const char *const * rowNames=block->rowNames()->names();
      for (int i=0;i<numberItems;i++) {
        int put = whichRow[i+iRowBase];
        std::string name = rowNames[i];
        setRowName(put,name);
      }
      }
    }
    if (info.columnName) {
      int numberItems = block->columnNames()->numberItems();
      assert( block->numberColumns()>=numberItems);
      if (numberItems) {
      const char *const * columnNames=block->columnNames()->names();
      for (int i=0;i<numberItems;i++) {
        int put = whichColumn[i+iColumnBase];
        std::string name = columnNames[i];
        setColumnName(put,name);
      }
      }
    }
    if (info.matrix) {
      CoinPackedMatrix matrix2;
      const CoinPackedMatrix * matrix = block->packedMatrix();
      if (!matrix) {
      double * associated = block->associatedArray();
      block->createPackedMatrix(matrix2,associated);
      matrix = &matrix2;
      }
      // get matrix data pointers
      const int * row2 = matrix->getIndices();
      const CoinBigIndex * columnStart = matrix->getVectorStarts();
      const double * elementByColumn = matrix->getElements();
      const int * columnLength = matrix->getVectorLengths(); 
      int n = matrix->getNumCols();
      assert (matrix->isColOrdered());
      for (int iColumn=0;iColumn<n;iColumn++) {
      CoinBigIndex j;
      int jColumn = whichColumn[iColumn+iColumnBase];
      for (j=columnStart[iColumn];
           j<columnStart[iColumn]+columnLength[iColumn];j++) {
        row[numberElements]=whichRow[row2[j]+iRowBase];
        column[numberElements]=jColumn;
        element[numberElements++]=elementByColumn[j];
      }
      }
    }
  }
  delete [] whichRow;
  delete [] whichColumn;
  delete [] rowBase;
  delete [] columnBase;
  CoinPackedMatrix * matrix =
    new CoinPackedMatrix (true,row,column,element,numberElements);
  matrix_ = new ClpPackedMatrix(matrix);
  matrix_->setDimensions(numberRows,numberColumns);
  delete [] row;
  delete [] column;
  delete [] element;
  createStatus();
  if (status) {
    // copy back
    CoinMemcpyN(status,numberRows_+numberColumns_,status_);
    CoinMemcpyN(psol,numberColumns_,columnActivity_);
    CoinMemcpyN(psol+numberColumns_,numberRows_,rowActivity_);
    CoinMemcpyN(dsol,numberColumns_,reducedCost_);
    CoinMemcpyN(dsol+numberColumns_,numberRows_,dual_);
    delete [] status;
    delete [] psol;
    delete [] dsol;
  }
  optimizationDirection_ = coinModel.optimizationDirection();  
  return returnCode;
}
/*  If input negative scales objective so maximum <= -value
    and returns scale factor used.  If positive unscales and also
    redoes dual stuff
*/
double 
03629 ClpSimplex::scaleObjective(double value)
{
  double * obj = objective(); 
  double largest=0.0;
  if (value<0.0) {
    value = - value;
    for (int i=0;i<numberColumns_;i++) {
      largest = CoinMax(largest,fabs(obj[i]));
    }
    if (largest>value) {
      double scaleFactor = value/largest;
      for (int i=0;i<numberColumns_;i++) {
      obj[i] *= scaleFactor;
      reducedCost_[i] *= scaleFactor;
      }
      for (int i=0;i<numberRows_;i++) {
      dual_[i] *= scaleFactor;
      }
      largest /= value;
    } else {
      // no need
      largest=1.0;
    }
  } else {
    // at end
    if (value!=1.0) {
      for (int i=0;i<numberColumns_;i++) {
      obj[i] *= value;
      reducedCost_[i] *= value;
      }
      for (int i=0;i<numberRows_;i++) {
      dual_[i] *= value;
      }
      computeObjectiveValue();
    }
  }
  return largest;
}
// Solve using Dantzig-Wolfe decomposition and maybe in parallel
int 
03669 ClpSimplex::solveDW(CoinStructuredModel * model)
{
  double time1 = CoinCpuTime();
  int numberColumns = model->numberColumns();
  int numberRowBlocks=model->numberRowBlocks();
  int numberColumnBlocks = model->numberColumnBlocks();
  int numberElementBlocks = model->numberElementBlocks();
  // We already have top level structure
  CoinModelBlockInfo * blockInfo = new CoinModelBlockInfo [numberElementBlocks];
  for (int i=0;i<numberElementBlocks;i++) {
    CoinModel * thisBlock = model->coinBlock(i);
    assert (thisBlock);
    // just fill in info
    CoinModelBlockInfo info = CoinModelBlockInfo();
    int whatsSet = thisBlock->whatIsSet();
    info.matrix = static_cast<char>(((whatsSet&1)!=0) ? 1 : 0);
    info.rhs = static_cast<char>(((whatsSet&2)!=0) ? 1 : 0);
    info.rowName = static_cast<char>(((whatsSet&4)!=0) ? 1 : 0);
    info.integer = static_cast<char>(((whatsSet&32)!=0) ? 1 : 0);
    info.bounds = static_cast<char>(((whatsSet&8)!=0) ? 1 : 0);
    info.columnName = static_cast<char>(((whatsSet&16)!=0) ? 1 : 0);
    // Which block
    int iRowBlock=model->rowBlock(thisBlock->getRowBlock());
    info.rowBlock=iRowBlock;
    int iColumnBlock=model->columnBlock(thisBlock->getColumnBlock());
    info.columnBlock=iColumnBlock;
    blockInfo[i] = info;
  }
  // make up problems
  int numberBlocks=numberRowBlocks-1;
  // Find master rows and columns
  int * rowCounts = new int [numberRowBlocks];
  CoinZeroN(rowCounts,numberRowBlocks);
  int * columnCounts = new int [numberColumnBlocks+1];
  CoinZeroN(columnCounts,numberColumnBlocks);
  int iBlock;
  for (iBlock = 0;iBlock<numberElementBlocks;iBlock++) {
    int iRowBlock = blockInfo[iBlock].rowBlock;
    rowCounts[iRowBlock]++;
    int iColumnBlock =blockInfo[iBlock].columnBlock;
    columnCounts[iColumnBlock]++;
  }
  int * whichBlock = new int [numberElementBlocks];
  int masterRowBlock=-1;
  for (iBlock = 0;iBlock<numberRowBlocks;iBlock++) {
    if (rowCounts[iBlock]>1) {
      if (masterRowBlock==-1) {
      masterRowBlock=iBlock;
      } else {
      // Can't decode
      masterRowBlock=-2;
      break;
      }
    }
  }
  int masterColumnBlock=-1;
  int kBlock=0;
  for (iBlock = 0;iBlock<numberColumnBlocks;iBlock++) {
    int count=columnCounts[iBlock];
    columnCounts[iBlock]=kBlock;
    kBlock += count;
  }
  for (iBlock = 0;iBlock<numberElementBlocks;iBlock++) {
    int iColumnBlock = blockInfo[iBlock].columnBlock;
    whichBlock[columnCounts[iColumnBlock]]=iBlock;
    columnCounts[iColumnBlock]++;
  }
  for (iBlock = numberColumnBlocks-1;iBlock>=0;iBlock--) 
    columnCounts[iBlock+1]=columnCounts[iBlock];
  columnCounts[0]=0;
  for (iBlock = 0;iBlock<numberColumnBlocks;iBlock++) {
    int count=columnCounts[iBlock+1]-columnCounts[iBlock];
    if (count==1) {
      int kBlock = whichBlock[columnCounts[iBlock]];
      int iRowBlock = blockInfo[kBlock].rowBlock;
      if (iRowBlock==masterRowBlock) {
      if (masterColumnBlock==-1) {
        masterColumnBlock=iBlock;
      } else {
        // Can't decode
        masterColumnBlock=-2;
        break;
      }
      }
    }
  }
  if (masterRowBlock<0||masterColumnBlock==-2) {
    // What now
    abort();
  }
  delete [] rowCounts;
  // create all data
  const CoinPackedMatrix ** top = new const CoinPackedMatrix * [numberColumnBlocks];
  ClpSimplex * sub = new ClpSimplex [numberBlocks];
  ClpSimplex master;
  // Set offset
  master.setObjectiveOffset(model->objectiveOffset());
  kBlock=0;
  int masterBlock=-1;
  for (iBlock = 0;iBlock<numberColumnBlocks;iBlock++) {
    top[kBlock]=NULL;
    int start=columnCounts[iBlock];
    int end=columnCounts[iBlock+1];
    assert (end-start<=2);
    for (int j=start;j<end;j++) {
      int jBlock = whichBlock[j];
      int iRowBlock = blockInfo[jBlock].rowBlock;
      int iColumnBlock =blockInfo[jBlock].columnBlock;
      assert (iColumnBlock==iBlock);
      if (iColumnBlock!=masterColumnBlock&&iRowBlock==masterRowBlock) {
      // top matrix
      top[kBlock]=model->coinBlock(jBlock)->packedMatrix();
      } else {
      const CoinPackedMatrix * matrix
        = model->coinBlock(jBlock)->packedMatrix();
      // Get pointers to arrays
      const double * rowLower;
      const double * rowUpper;
      const double * columnLower;
      const double * columnUpper;
      const double * objective;
      model->block(iRowBlock,iColumnBlock,rowLower,rowUpper,
                 columnLower,columnUpper,objective);
      if (iColumnBlock!=masterColumnBlock) {
        // diagonal block
        sub[kBlock].loadProblem(*matrix,columnLower,columnUpper,
                          objective,rowLower,rowUpper);
        if (true) {
          double * lower = sub[kBlock].columnLower();
          double * upper = sub[kBlock].columnUpper();
          int n = sub[kBlock].numberColumns();
          for (int i=0;i<n;i++) {
            lower[i]=CoinMax(-1.0e8,lower[i]);
            upper[i]=CoinMin(1.0e8,upper[i]);
          }
        }
        if (optimizationDirection_<0.0) {
          double * obj = sub[kBlock].objective();
          int n = sub[kBlock].numberColumns();
          for (int i=0;i<n;i++)
            obj[i] = - obj[i];
        }
        if (this->factorizationFrequency()==200) {
          // User did not touch preset
          sub[kBlock].defaultFactorizationFrequency();
        } else {
          // make sure model has correct value
          sub[kBlock].setFactorizationFrequency(this->factorizationFrequency());
        }
        sub[kBlock].setPerturbation(50);
        // Set columnCounts to be diagonal block index for cleanup
        columnCounts[kBlock]=jBlock;
      } else {
        // master
        masterBlock=jBlock;
        master.loadProblem(*matrix,columnLower,columnUpper,
                       objective,rowLower,rowUpper);
        if (optimizationDirection_<0.0) {
          double * obj = master.objective();
          int n = master.numberColumns();
          for (int i=0;i<n;i++)
            obj[i] = - obj[i];
        }
      }
      }
    }
    if (iBlock!=masterColumnBlock) 
      kBlock++;
  }
  delete [] whichBlock;
  delete [] blockInfo;
  // For now master must have been defined (does not have to have columns)
  assert (master.numberRows());
  assert (masterBlock>=0);
  int numberMasterRows = master.numberRows();
  // Overkill in terms of space
  int spaceNeeded = CoinMax(numberBlocks*(numberMasterRows+1),
                      2*numberMasterRows);
  int * rowAdd = new int[spaceNeeded];
  double * elementAdd = new double[spaceNeeded];
  spaceNeeded = numberBlocks;
  int * columnAdd = new int[spaceNeeded+1];
  double * objective = new double[spaceNeeded];
  // Add in costed slacks
  int firstArtificial = master.numberColumns();
  int lastArtificial = firstArtificial;
  if (true) {
    const double * lower = master.rowLower();
    const double * upper = master.rowUpper();
    int kCol=0;
    for (int iRow=0;iRow<numberMasterRows;iRow++) {
      if (lower[iRow]>-1.0e10) {
      rowAdd[kCol]=iRow;
      elementAdd[kCol++]=1.0;
      }
      if (upper[iRow]<1.0e10) {
      rowAdd[kCol]=iRow;
      elementAdd[kCol++]=-1.0;
      }
    }
    if (kCol>spaceNeeded) {
      spaceNeeded = kCol;
      delete [] columnAdd;
      delete [] objective;
      columnAdd = new int[spaceNeeded+1];
      objective = new double[spaceNeeded];
    }
    for (int i=0;i<kCol;i++) {
      columnAdd[i]=i;
      objective[i]=1.0e13;
    }
    columnAdd[kCol]=kCol;
    master.addColumns(kCol,NULL,NULL,objective,
                  columnAdd,rowAdd,elementAdd);
    lastArtificial = master.numberColumns();
  }
  int maxPass=500;
  int iPass;
  double lastObjective=1.0e31;
  // Create convexity rows for proposals 
  int numberMasterColumns = master.numberColumns();
  master.resize(numberMasterRows+numberBlocks,numberMasterColumns);
  if (this->factorizationFrequency()==200) {
    // User did not touch preset
    master.defaultFactorizationFrequency();
  } else {
    // make sure model has correct value
    master.setFactorizationFrequency(this->factorizationFrequency());
  }
  master.setPerturbation(50);
  // Arrays to say which block and when created
  int maximumColumns = 2*numberMasterRows+10*numberBlocks;
  whichBlock = new int[maximumColumns];
  int * when = new int[maximumColumns];
  int numberColumnsGenerated=numberBlocks;
  // fill in rhs and add in artificials
  {
    double * rowLower = master.rowLower();
    double * rowUpper = master.rowUpper();
    int iBlock;
    columnAdd[0] = 0;
    for (iBlock=0;iBlock<numberBlocks;iBlock++) {
      int iRow = iBlock + numberMasterRows;;
      rowLower[iRow]=1.0;
      rowUpper[iRow]=1.0;
      rowAdd[iBlock] = iRow;
      elementAdd[iBlock] = 1.0;
      objective[iBlock] = 1.0e13;
      columnAdd[iBlock+1] = iBlock+1;
      when[iBlock]=-1;
      whichBlock[iBlock] = iBlock;
    }
    master.addColumns(numberBlocks,NULL,NULL,objective,
                  columnAdd, rowAdd, elementAdd);
  }
  // and resize matrix to double check clp will be happy
  //master.matrix()->setDimensions(numberMasterRows+numberBlocks,
  //               numberMasterColumns+numberBlocks);
  std::cout<<"Time to decompose "<<CoinCpuTime()-time1<<" seconds"<<std::endl;
  for (iPass=0;iPass<maxPass;iPass++) {
    printf("Start of pass %d\n",iPass);
    // Solve master - may be infeasible
    //master.scaling(0);
    if (0) {
      master.writeMps("yy.mps");
    }
    // Correct artificials
    double sumArtificials=0.0;
    if (iPass) {
      double * upper = master.columnUpper();
      double * solution = master.primalColumnSolution();
      double * obj = master.objective();
      sumArtificials=0.0;
      for (int i=firstArtificial;i<lastArtificial;i++) {
      sumArtificials += solution[i];
      //assert (solution[i]>-1.0e-2);
      if (solution[i]<1.0e-6) {
#if 0
        // Could take out
        obj[i]=0.0;
        upper[i]=0.0;
#else
        obj[i]=1.0e7;
        upper[i]=1.0e-1;
#endif
        solution[i]=0.0;
        master.setColumnStatus(i,isFixed);
      } else {
        upper[i]=solution[i]+1.0e-5*(1.0+solution[i]);
      }
      }
      printf("Sum of artificials before solve is %g\n",sumArtificials);
    }
    // scale objective to be reasonable
    double scaleFactor = master.scaleObjective(-1.0e9);
    {
      double * dual = master.dualRowSolution();
      int n=master.numberRows();
      memset(dual,0,n*sizeof(double));
      double * solution = master.primalColumnSolution();
      master.clpMatrix()->times(1.0,solution,dual);
      double sum=0.0;
      double * lower = master.rowLower();
      double * upper = master.rowUpper();
      for (int iRow=0;iRow<n;iRow++) {
      double value = dual[iRow];
      if (value>upper[iRow])
        sum += value-upper[iRow];
      else if (value<lower[iRow])
        sum -= value-lower[iRow];
      }
      printf("suminf %g\n",sum);
      lower = master.columnLower();
      upper = master.columnUpper();
      n=master.numberColumns();
      for (int iColumn=0;iColumn<n;iColumn++) {
      double value = solution[iColumn];
      if (value>upper[iColumn]+1.0e-5)
        sum += value-upper[iColumn];
      else if (value<lower[iColumn]-1.0e-5)
        sum -= value-lower[iColumn];
      }
      printf("suminf %g\n",sum);
    }
    master.primal(1);
    // Correct artificials
    sumArtificials=0.0;
    {
      double * solution = master.primalColumnSolution();
      for (int i=firstArtificial;i<lastArtificial;i++) {
      sumArtificials += solution[i];
      }
      printf("Sum of artificials after solve is %g\n",sumArtificials);
    }
    master.scaleObjective(scaleFactor);
    int problemStatus = master.status(); // do here as can change (delcols)
    if (master.numberIterations()==0&&iPass)
      break; // finished
    if (master.objectiveValue()>lastObjective-1.0e-7&&iPass>555)
      break; // finished
    lastObjective = master.objectiveValue();
    // mark basic ones and delete if necessary
    int iColumn;
    numberColumnsGenerated=master.numberColumns()-numberMasterColumns;
    for (iColumn=0;iColumn<numberColumnsGenerated;iColumn++) {
      if (master.getStatus(iColumn+numberMasterColumns)==ClpSimplex::basic)
      when[iColumn]=iPass;
    }
    if (numberColumnsGenerated+numberBlocks>maximumColumns) {
      // delete
      int numberKeep=0;
      int numberDelete=0;
      int * whichDelete = new int[numberColumnsGenerated];
      for (iColumn=0;iColumn<numberColumnsGenerated;iColumn++) {
      if (when[iColumn]>iPass-7) {
        // keep
        when[numberKeep]=when[iColumn];
        whichBlock[numberKeep++]=whichBlock[iColumn];
      } else {
        // delete
        whichDelete[numberDelete++]=iColumn+numberMasterColumns;
      }
      }
      numberColumnsGenerated -= numberDelete;
      master.deleteColumns(numberDelete,whichDelete);
      delete [] whichDelete;
    }
    const double * dual=NULL;
    bool deleteDual=false;
    if (problemStatus==0) {
      dual = master.dualRowSolution();
    } else if (problemStatus==1) {
      // could do composite objective
      dual = master.infeasibilityRay();
      deleteDual = true;
      printf("The sum of infeasibilities is %g\n",
           master.sumPrimalInfeasibilities());
    } else if (!master.numberColumns()) {
      assert(!iPass);
      dual = master.dualRowSolution();
      memset(master.dualRowSolution(),
           0,(numberMasterRows+numberBlocks)*sizeof(double));
    } else {
      abort();
    }
    // Scale back on first time
    if (!iPass) {
      double * dual2 = master.dualRowSolution();
      for (int i=0;i<numberMasterRows+numberBlocks;i++) {
      dual2[i] *= 1.0e-7;
      }
      dual = master.dualRowSolution();
    }
    // Create objective for sub problems and solve
    columnAdd[0]=0;
    int numberProposals=0;
    for (iBlock=0;iBlock<numberBlocks;iBlock++) {
      int numberColumns2 = sub[iBlock].numberColumns();
      double * saveObj = new double [numberColumns2];
      double * objective2 = sub[iBlock].objective();
      memcpy(saveObj,objective2,numberColumns2*sizeof(double));
      // new objective
      top[iBlock]->transposeTimes(dual,objective2);
      int i;
      if (problemStatus==0) {
      for (i=0;i<numberColumns2;i++)
        objective2[i] = saveObj[i]-objective2[i];
      } else {
      for (i=0;i<numberColumns2;i++)
        objective2[i] = -objective2[i];
      }
      // scale objective to be reasonable
      double scaleFactor = 
      sub[iBlock].scaleObjective((sumArtificials>1.0e-5) ? -1.0e-4 :-1.0e9);
      if (iPass) {
      sub[iBlock].primal();
      } else {
      sub[iBlock].dual();
      }
      sub[iBlock].scaleObjective(scaleFactor);
      if (!sub[iBlock].isProvenOptimal()&& 
        !sub[iBlock].isProvenDualInfeasible()) {
      memset(objective2,0,numberColumns2*sizeof(double));
      sub[iBlock].primal();
      if (problemStatus==0) {
        for (i=0;i<numberColumns2;i++)
          objective2[i] = saveObj[i]-objective2[i];
      } else {
        for (i=0;i<numberColumns2;i++)
          objective2[i] = -objective2[i];
      }
      double scaleFactor = sub[iBlock].scaleObjective(-1.0e9);
      sub[iBlock].primal(1);
      sub[iBlock].scaleObjective(scaleFactor);
      }
      memcpy(objective2,saveObj,numberColumns2*sizeof(double));
      // get proposal
      if (sub[iBlock].numberIterations()||!iPass) {
      double objValue =0.0;
      int start = columnAdd[numberProposals];
      // proposal
      if (sub[iBlock].isProvenOptimal()) {
        const double * solution = sub[iBlock].primalColumnSolution();
        top[iBlock]->times(solution,elementAdd+start);
        for (i=0;i<numberColumns2;i++)
          objValue += solution[i]*saveObj[i];
        // See if good dj and pack down
        int number=start;
        double dj = objValue;
        if (problemStatus) 
          dj=0.0;
        double smallest=1.0e100;
        double largest=0.0;
        for (i=0;i<numberMasterRows;i++) {
          double value = elementAdd[start+i];
          if (fabs(value)>1.0e-15) {
            dj -= dual[i]*value;
            smallest = CoinMin(smallest,fabs(value));
            largest = CoinMax(largest,fabs(value));
            rowAdd[number]=i;
            elementAdd[number++]=value;
          }
        }
        // and convexity
        dj -= dual[numberMasterRows+iBlock];
        rowAdd[number]=numberMasterRows+iBlock;
        elementAdd[number++]=1.0;
        // if elements large then scale?
        //if (largest>1.0e8||smallest<1.0e-8)
        printf("For subproblem %d smallest - %g, largest %g - dj %g\n",
             iBlock,smallest,largest,dj);
        if (dj<-1.0e-6||!iPass) {
          // take
          objective[numberProposals]=objValue;
          columnAdd[++numberProposals]=number;
          when[numberColumnsGenerated]=iPass;
          whichBlock[numberColumnsGenerated++]=iBlock;
        }
      } else if (sub[iBlock].isProvenDualInfeasible()) {
        // use ray
        const double * solution = sub[iBlock].unboundedRay();
        top[iBlock]->times(solution,elementAdd+start);
        for (i=0;i<numberColumns2;i++)
          objValue += solution[i]*saveObj[i];
        // See if good dj and pack down
        int number=start;
        double dj = objValue;
        double smallest=1.0e100;
        double largest=0.0;
        for (i=0;i<numberMasterRows;i++) {
          double value = elementAdd[start+i];
          if (fabs(value)>1.0e-15) {
            dj -= dual[i]*value;
            smallest = CoinMin(smallest,fabs(value));
            largest = CoinMax(largest,fabs(value));
            rowAdd[number]=i;
            elementAdd[number++]=value;
          }
        }
        // if elements large or small then scale?
        //if (largest>1.0e8||smallest<1.0e-8)
        printf("For subproblem ray %d smallest - %g, largest %g - dj %g\n",
             iBlock,smallest,largest,dj);
        if (dj<-1.0e-6) {
          // take
          objective[numberProposals]=objValue;
          columnAdd[++numberProposals]=number;
          when[numberColumnsGenerated]=iPass;
          whichBlock[numberColumnsGenerated++]=iBlock;
        }
      } else {
        abort();
      }
      }
      delete [] saveObj;
    }
    if (deleteDual)
      delete [] dual;
    if (numberProposals) 
      master.addColumns(numberProposals,NULL,NULL,objective,
                  columnAdd,rowAdd,elementAdd);
  }
  std::cout<<"Time at end of D-W "<<CoinCpuTime()-time1<<" seconds"<<std::endl;
  //master.scaling(0);
  //master.primal(1);
  loadProblem(*model);
  // now put back a good solution
  double * lower = new double[numberMasterRows+numberBlocks];
  double * upper = new double[numberMasterRows+numberBlocks];
  numberColumnsGenerated  += numberMasterColumns;
  double * sol = new double[numberColumnsGenerated];
  const double * solution = master.primalColumnSolution();
  const double * masterLower = master.rowLower();
  const double * masterUpper = master.rowUpper();
  double * fullSolution = primalColumnSolution();
  const double * fullLower = columnLower();
  const double * fullUpper = columnUpper();
  const double * rowSolution = master.primalRowSolution();
  double * fullRowSolution = primalRowSolution();
  const int * rowBack = model->coinBlock(masterBlock)->originalRows();
  int numberRows2 = model->coinBlock(masterBlock)->numberRows();
  const int * columnBack = model->coinBlock(masterBlock)->originalColumns();
  int numberColumns2 = model->coinBlock(masterBlock)->numberColumns();
  for (int iRow=0;iRow<numberRows2;iRow++) {
    int kRow = rowBack[iRow];
    setRowStatus(kRow,master.getRowStatus(iRow));
    fullRowSolution[kRow]=rowSolution[iRow];
  }
  for (int iColumn=0;iColumn<numberColumns2;iColumn++) {
    int kColumn = columnBack[iColumn];
    setStatus(kColumn,master.getStatus(iColumn));
    fullSolution[kColumn]=solution[iColumn];
  }
  for (iBlock=0;iBlock<numberBlocks;iBlock++) {
    // move basis
    int kBlock = columnCounts[iBlock];
    const int * rowBack = model->coinBlock(kBlock)->originalRows();
    int numberRows2 = model->coinBlock(kBlock)->numberRows();
    const int * columnBack = model->coinBlock(kBlock)->originalColumns();
    int numberColumns2 = model->coinBlock(kBlock)->numberColumns();
    for (int iRow=0;iRow<numberRows2;iRow++) {
      int kRow = rowBack[iRow];
      setRowStatus(kRow,sub[iBlock].getRowStatus(iRow));
    }
    for (int iColumn=0;iColumn<numberColumns2;iColumn++) {
      int kColumn = columnBack[iColumn];
      setStatus(kColumn,sub[iBlock].getStatus(iColumn));
    }
    // convert top bit to by rows
    CoinPackedMatrix topMatrix = *top[iBlock];
    topMatrix.reverseOrdering();
    // zero solution
    memset(sol,0,numberColumnsGenerated*sizeof(double));
    
    for (int i=numberMasterColumns;i<numberColumnsGenerated;i++) {
      if (whichBlock[i-numberMasterColumns]==iBlock)
      sol[i] = solution[i];
    }
    memset(lower,0,(numberMasterRows+numberBlocks)*sizeof(double));
    master.clpMatrix()->times(1.0,sol,lower);
    for (int iRow=0;iRow<numberMasterRows;iRow++) {
      double value = lower[iRow];
      if (masterUpper[iRow]<1.0e20) 
      upper[iRow] = value;
      else
      upper[iRow]=COIN_DBL_MAX;
      if (masterLower[iRow]>-1.0e20) 
      lower[iRow] = value;
      else
      lower[iRow]=-COIN_DBL_MAX;
    }
    sub[iBlock].addRows(numberMasterRows,lower,upper,
                  topMatrix.getVectorStarts(),
                  topMatrix.getVectorLengths(),
                  topMatrix.getIndices(),
                  topMatrix.getElements());
    sub[iBlock].primal(1);
    const double * subSolution = sub[iBlock].primalColumnSolution();
    const double * subRowSolution = sub[iBlock].primalRowSolution();
    // move solution
    for (int iRow=0;iRow<numberRows2;iRow++) {
      int kRow = rowBack[iRow];
      fullRowSolution[kRow]=subRowSolution[iRow];
    }
    for (int iColumn=0;iColumn<numberColumns2;iColumn++) {
      int kColumn = columnBack[iColumn];
      fullSolution[kColumn]=subSolution[iColumn];
    }
  }
  for (int iColumn=0;iColumn<numberColumns;iColumn++) {
    if (fullSolution[iColumn]<fullUpper[iColumn]-1.0e-8&&
      fullSolution[iColumn]>fullLower[iColumn]+1.0e-8) {
      if (getStatus(iColumn)!=ClpSimplex::basic) {
      if (columnLower_[iColumn]>-1.0e30||
          columnUpper_[iColumn]<1.0e30)
        setStatus(iColumn,ClpSimplex::superBasic);
      else
        setStatus(iColumn,ClpSimplex::isFree);
      }
    } else if (fullSolution[iColumn]>=fullUpper[iColumn]-1.0e-8) {
      // may help to make rest non basic
      if (getStatus(iColumn)!=ClpSimplex::basic) 
      setStatus(iColumn,ClpSimplex::atUpperBound);
    } else if (fullSolution[iColumn]<=fullLower[iColumn]+1.0e-8) {
      // may help to make rest non basic
      if (getStatus(iColumn)!=ClpSimplex::basic) 
      setStatus(iColumn,ClpSimplex::atLowerBound);
    }
  }
  //int numberRows=model->numberRows();
  //for (int iRow=0;iRow<numberRows;iRow++) 
  //setRowStatus(iRow,ClpSimplex::superBasic);
  std::cout<<"Time before cleanup of full model "<<CoinCpuTime()-time1<<" seconds"<<std::endl;
  primal(1);
  std::cout<<"Total time "<<CoinCpuTime()-time1<<" seconds"<<std::endl;
  delete [] columnCounts;
  delete [] sol;
  delete [] lower;
  delete [] upper;
  delete [] whichBlock;
  delete [] when;
  delete [] columnAdd;
  delete [] rowAdd;
  delete [] elementAdd;
  delete [] objective;
  delete [] top;
  delete [] sub;
  return 0;
}
// Solve using Benders decomposition and maybe in parallel
int 
04320 ClpSimplex::solveBenders(CoinStructuredModel * model)
{
  double time1 = CoinCpuTime();
  //int numberColumns = model->numberColumns();
  int numberRowBlocks=model->numberRowBlocks();
  int numberColumnBlocks = model->numberColumnBlocks();
  int numberElementBlocks = model->numberElementBlocks();
  // We already have top level structure
  CoinModelBlockInfo * blockInfo = new CoinModelBlockInfo [numberElementBlocks];
  for (int i=0;i<numberElementBlocks;i++) {
    CoinModel * thisBlock = model->coinBlock(i);
    assert (thisBlock);
    // just fill in info
    CoinModelBlockInfo info = CoinModelBlockInfo();
    int whatsSet = thisBlock->whatIsSet();
    info.matrix = static_cast<char>(((whatsSet&1)!=0) ? 1 : 0);
    info.rhs = static_cast<char>(((whatsSet&2)!=0) ? 1 : 0);
    info.rowName = static_cast<char>(((whatsSet&4)!=0) ? 1 : 0);
    info.integer = static_cast<char>(((whatsSet&32)!=0) ? 1 : 0);
    info.bounds = static_cast<char>(((whatsSet&8)!=0) ? 1 : 0);
    info.columnName = static_cast<char>(((whatsSet&16)!=0) ? 1 : 0);
    // Which block
    int iRowBlock=model->rowBlock(thisBlock->getRowBlock());
    info.rowBlock=iRowBlock;
    int iColumnBlock=model->columnBlock(thisBlock->getColumnBlock());
    info.columnBlock=iColumnBlock;
    blockInfo[i] = info;
  }
  // make up problems
  int numberBlocks=numberColumnBlocks-1;
  // Find master columns and rows
  int * columnCounts = new int [numberColumnBlocks];
  CoinZeroN(columnCounts,numberColumnBlocks);
  int * rowCounts = new int [numberRowBlocks+1];
  CoinZeroN(rowCounts,numberRowBlocks);
  int iBlock;
  for (iBlock = 0;iBlock<numberElementBlocks;iBlock++) {
    int iColumnBlock = blockInfo[iBlock].columnBlock;
    columnCounts[iColumnBlock]++;
    int iRowBlock =blockInfo[iBlock].rowBlock;
    rowCounts[iRowBlock]++;
  }
  int * whichBlock = new int [numberElementBlocks];
  int masterColumnBlock=-1;
  for (iBlock = 0;iBlock<numberColumnBlocks;iBlock++) {
    if (columnCounts[iBlock]>1) {
      if (masterColumnBlock==-1) {
      masterColumnBlock=iBlock;
      } else {
      // Can't decode
      masterColumnBlock=-2;
      break;
      }
    }
  }
  int masterRowBlock=-1;
  int kBlock=0;
  for (iBlock = 0;iBlock<numberRowBlocks;iBlock++) {
    int count=rowCounts[iBlock];
    rowCounts[iBlock]=kBlock;
    kBlock += count;
  }
  for (iBlock = 0;iBlock<numberElementBlocks;iBlock++) {
    int iRowBlock = blockInfo[iBlock].rowBlock;
    whichBlock[rowCounts[iRowBlock]]=iBlock;
    rowCounts[iRowBlock]++;
  }
  for (iBlock = numberRowBlocks-1;iBlock>=0;iBlock--) 
    rowCounts[iBlock+1]=rowCounts[iBlock];
  rowCounts[0]=0;
  for (iBlock = 0;iBlock<numberRowBlocks;iBlock++) {
    int count=rowCounts[iBlock+1]-rowCounts[iBlock];
    if (count==1) {
      int kBlock = whichBlock[rowCounts[iBlock]];
      int iColumnBlock = blockInfo[kBlock].columnBlock;
      if (iColumnBlock==masterColumnBlock) {
      if (masterRowBlock==-1) {
        masterRowBlock=iBlock;
      } else {
        // Can't decode
        masterRowBlock=-2;
        break;
      }
      }
    }
  }
  if (masterColumnBlock<0||masterRowBlock==-2) {
    // What now
    abort();
  }
  delete [] columnCounts;
  // create all data
  const CoinPackedMatrix ** first = new const CoinPackedMatrix * [numberRowBlocks];
  ClpSimplex * sub = new ClpSimplex [numberBlocks];
  ClpSimplex master;
  // Set offset
  master.setObjectiveOffset(model->objectiveOffset());
  kBlock=0;
  int masterBlock=-1;
  for (iBlock = 0;iBlock<numberRowBlocks;iBlock++) {
    first[kBlock]=NULL;
    int start=rowCounts[iBlock];
    int end=rowCounts[iBlock+1];
    assert (end-start<=2);
    for (int j=start;j<end;j++) {
      int jBlock = whichBlock[j];
      int iColumnBlock = blockInfo[jBlock].columnBlock;
      int iRowBlock =blockInfo[jBlock].rowBlock;
      assert (iRowBlock==iBlock);
      if (iRowBlock!=masterRowBlock&&iColumnBlock==masterColumnBlock) {
      // first matrix
      first[kBlock]=model->coinBlock(jBlock)->packedMatrix();
      } else {
      const CoinPackedMatrix * matrix
        = model->coinBlock(jBlock)->packedMatrix();
      // Get pointers to arrays
      const double * columnLower;
      const double * columnUpper;
      const double * rowLower;
      const double * rowUpper;
      const double * objective;
      model->block(iRowBlock,iColumnBlock,rowLower,rowUpper,
                 columnLower,columnUpper,objective);
      if (iRowBlock!=masterRowBlock) {
        // diagonal block
        sub[kBlock].loadProblem(*matrix,columnLower,columnUpper,
                          objective,rowLower,rowUpper);
        if (optimizationDirection_<0.0) {
          double * obj = sub[kBlock].objective();
          int n = sub[kBlock].numberColumns();
          for (int i=0;i<n;i++)
            obj[i] = - obj[i];
        }
        if (this->factorizationFrequency()==200) {
          // User did not touch preset
          sub[kBlock].defaultFactorizationFrequency();
        } else {
          // make sure model has correct value
          sub[kBlock].setFactorizationFrequency(this->factorizationFrequency());
        }
        sub[kBlock].setPerturbation(50);
        // Set rowCounts to be diagonal block index for cleanup
        rowCounts[kBlock]=jBlock;
      } else {
        // master
        masterBlock=jBlock;
        master.loadProblem(*matrix,columnLower,columnUpper,
                       objective,rowLower,rowUpper);
        if (optimizationDirection_<0.0) {
          double * obj = master.objective();
          int n = master.numberColumns();
          for (int i=0;i<n;i++)
            obj[i] = - obj[i];
        }
      }
      }
    }
    if (iBlock!=masterRowBlock) 
      kBlock++;
  }
  delete [] whichBlock;
  delete [] blockInfo;
  // For now master must have been defined (does not have to have rows)
  assert (master.numberColumns());
  assert (masterBlock>=0);
  int numberMasterColumns = master.numberColumns();
  // Overkill in terms of space
  int spaceNeeded = CoinMax(numberBlocks*(numberMasterColumns+1),
                      2*numberMasterColumns);
  int * columnAdd = new int[spaceNeeded];
  double * elementAdd = new double[spaceNeeded];
  spaceNeeded = numberBlocks;
  int * rowAdd = new int[spaceNeeded+1];
  double * objective = new double[spaceNeeded];
  int maxPass=500;
  int iPass;
  double lastObjective=-1.0e31;
  // Create columns for proposals 
  int numberMasterRows = master.numberRows();
  master.resize(numberMasterColumns+numberBlocks,numberMasterRows);
  if (this->factorizationFrequency()==200) {
    // User did not touch preset
    master.defaultFactorizationFrequency();
  } else {
    // make sure model has correct value
    master.setFactorizationFrequency(this->factorizationFrequency());
  }
  master.setPerturbation(50);
  // Arrays to say which block and when created
  int maximumRows = 2*numberMasterColumns+10*numberBlocks;
  whichBlock = new int[maximumRows];
  int * when = new int[maximumRows];
  int numberRowsGenerated=numberBlocks;
  // Add extra variables
  {
    int iBlock;
    columnAdd[0] = 0;
    for (iBlock=0;iBlock<numberBlocks;iBlock++) {
      objective[iBlock] = 1.0;
      columnAdd[iBlock+1] = 0;
      when[iBlock]=-1;
      whichBlock[iBlock] = iBlock;
    }
    master.addColumns(numberBlocks,NULL,NULL,objective,
                  columnAdd, rowAdd, elementAdd);
  }
  std::cout<<"Time to decompose "<<CoinCpuTime()-time1<<" seconds"<<std::endl;
  for (iPass=0;iPass<maxPass;iPass++) {
    printf("Start of pass %d\n",iPass);
    // Solve master - may be unbounded
    //master.scaling(0);
    if (1) {
      master.writeMps("yy.mps");
    }
    master.dual();
    int problemStatus = master.status(); // do here as can change (delcols)
    if (master.numberIterations()==0&&iPass)
      break; // finished
    if (master.objectiveValue()<lastObjective+1.0e-7&&iPass>555)
      break; // finished
    lastObjective = master.objectiveValue();
    // mark non-basic rows and delete if necessary
    int iRow;
    numberRowsGenerated=master.numberRows()-numberMasterRows;
    for (iRow=0;iRow<numberRowsGenerated;iRow++) {
      if (master.getStatus(iRow+numberMasterRows)!=ClpSimplex::basic)
      when[iRow]=iPass;
    }
    if (numberRowsGenerated>maximumRows) {
      // delete
      int numberKeep=0;
      int numberDelete=0;
      int * whichDelete = new int[numberRowsGenerated];
      for (iRow=0;iRow<numberRowsGenerated;iRow++) {
      if (when[iRow]>iPass-7) {
        // keep
        when[numberKeep]=when[iRow];
        whichBlock[numberKeep++]=whichBlock[iRow];
      } else {
        // delete
        whichDelete[numberDelete++]=iRow+numberMasterRows;
      }
      }
      numberRowsGenerated -= numberDelete;
      master.deleteRows(numberDelete,whichDelete);
      delete [] whichDelete;
    }
    const double * primal=NULL;
    bool deletePrimal=false;
    if (problemStatus==0) {
      primal = master.primalColumnSolution();
    } else if (problemStatus==2) {
      // could do composite objective
      primal = master.unboundedRay();
      deletePrimal = true;
      printf("The sum of infeasibilities is %g\n",
           master.sumPrimalInfeasibilities());
    } else if (!master.numberRows()) {
      assert(!iPass);
      primal = master.primalColumnSolution();
      memset(master.primalColumnSolution(),
           0,numberMasterColumns*sizeof(double));
    } else {
      abort();
    }
    // Create rhs for sub problems and solve
    rowAdd[0]=0;
    int numberProposals=0;
    for (iBlock=0;iBlock<numberBlocks;iBlock++) {
      int numberRows2 = sub[iBlock].numberRows();
      double * saveLower = new double [numberRows2];
      double * lower2 = sub[iBlock].rowLower();
      double * saveUpper = new double [numberRows2];
      double * upper2 = sub[iBlock].rowUpper();
      // new rhs
      CoinZeroN(saveUpper,numberRows2);
      first[iBlock]->times(primal,saveUpper);
      for (int i=0;i<numberRows2;i++) {
      double value = saveUpper[i];
      saveLower[i]=lower2[i];
      saveUpper[i]=upper2[i];
      if (saveLower[i]>-1.0e30)
        lower2[i] -= value;
      if (saveUpper[i]<1.0e30)
        upper2[i] -= value;
      }
      sub[iBlock].dual();
      memcpy(lower2,saveLower,numberRows2*sizeof(double));
      memcpy(upper2,saveUpper,numberRows2*sizeof(double));
      // get proposal
      if (sub[iBlock].numberIterations()||!iPass) {
      double objValue =0.0;
      int start = rowAdd[numberProposals];
      // proposal
      if (sub[iBlock].isProvenOptimal()) {
        const double * solution = sub[iBlock].dualRowSolution();
        first[iBlock]->transposeTimes(solution,elementAdd+start);
        for (int i=0;i<numberRows2;i++) {
          if (solution[i]<-dualTolerance_) {
            // at upper
            assert (saveUpper[i]<1.0e30);
            objValue += solution[i]*saveUpper[i];
          } else if (solution[i]>dualTolerance_) {
            // at lower
            assert (saveLower[i]>-1.0e30);
            objValue += solution[i]*saveLower[i];
          }
        }
        
        // See if cuts off and pack down
        int number=start;
        double infeas = objValue;
        double smallest=1.0e100;
        double largest=0.0;
        for (int i=0;i<numberMasterColumns;i++) {
          double value = elementAdd[start+i];
          if (fabs(value)>1.0e-15) {
            infeas -= primal[i]*value;
            smallest = CoinMin(smallest,fabs(value));
            largest = CoinMax(largest,fabs(value));
            columnAdd[number]=i;
            elementAdd[number++]=-value;
          }
        }
        columnAdd[number]=numberMasterColumns+iBlock;
        elementAdd[number++]=-1.0;
        // if elements large then scale?
        //if (largest>1.0e8||smallest<1.0e-8)
        printf("For subproblem %d smallest - %g, largest %g - infeas %g\n",
             iBlock,smallest,largest,infeas);
        if (infeas<-1.0e-6||!iPass) {
          // take
          objective[numberProposals]=objValue;
          rowAdd[++numberProposals]=number;
          when[numberRowsGenerated]=iPass;
          whichBlock[numberRowsGenerated++]=iBlock;
        }
      } else if (sub[iBlock].isProvenPrimalInfeasible()) {
        // use ray
        const double * solution = sub[iBlock].infeasibilityRay();
        first[iBlock]->transposeTimes(solution,elementAdd+start);
        for (int i=0;i<numberRows2;i++) {
          if (solution[i]<-dualTolerance_) {
            // at upper
            assert (saveUpper[i]<1.0e30);
            objValue += solution[i]*saveUpper[i];
          } else if (solution[i]>dualTolerance_) {
            // at lower
            assert (saveLower[i]>-1.0e30);
            objValue += solution[i]*saveLower[i];
          }
        }
        // See if good infeas and pack down
        int number=start;
        double infeas = objValue;
        double smallest=1.0e100;
        double largest=0.0;
        for (int i=0;i<numberMasterColumns;i++) {
          double value = elementAdd[start+i];
          if (fabs(value)>1.0e-15) {
            infeas -= primal[i]*value;
            smallest = CoinMin(smallest,fabs(value));
            largest = CoinMax(largest,fabs(value));
            columnAdd[number]=i;
            elementAdd[number++]=-value;
          }
        }
        // if elements large or small then scale?
        //if (largest>1.0e8||smallest<1.0e-8)
        printf("For subproblem ray %d smallest - %g, largest %g - infeas %g\n",
             iBlock,smallest,largest,infeas);
        if (infeas<-1.0e-6) {
          // take
          objective[numberProposals]=objValue;
          rowAdd[++numberProposals]=number;
          when[numberRowsGenerated]=iPass;
          whichBlock[numberRowsGenerated++]=iBlock;
        }
      } else {
        abort();
      }
      }
      delete [] saveLower;
      delete [] saveUpper;
    }
    if (deletePrimal)
      delete [] primal;
    if (numberProposals) {
      master.addRows(numberProposals,NULL,objective,
                  rowAdd,columnAdd,elementAdd);
    }
  }
  std::cout<<"Time at end of Benders "<<CoinCpuTime()-time1<<" seconds"<<std::endl;
  //master.scaling(0);
  //master.primal(1);
  loadProblem(*model);
  // now put back a good solution
  const double * columnSolution = master.primalColumnSolution();
  double * fullColumnSolution = primalColumnSolution();
  const int * columnBack = model->coinBlock(masterBlock)->originalColumns();
  int numberColumns2 = model->coinBlock(masterBlock)->numberColumns();
  const int * rowBack = model->coinBlock(masterBlock)->originalRows();
  int numberRows2 = model->coinBlock(masterBlock)->numberRows();
  for (int iColumn=0;iColumn<numberColumns2;iColumn++) {
    int kColumn = columnBack[iColumn];
    setColumnStatus(kColumn,master.getColumnStatus(iColumn));
    fullColumnSolution[kColumn]=columnSolution[iColumn];
  }
  for (int iRow=0;iRow<numberRows2;iRow++) {
    int kRow = rowBack[iRow];
    setStatus(kRow,master.getStatus(iRow));
    //fullSolution[kRow]=solution[iRow];
  }
  for (iBlock=0;iBlock<numberBlocks;iBlock++) {
    // move basis
    int kBlock = rowCounts[iBlock];
    const int * columnBack = model->coinBlock(kBlock)->originalColumns();
    int numberColumns2 = model->coinBlock(kBlock)->numberColumns();
    const int * rowBack = model->coinBlock(kBlock)->originalRows();
    int numberRows2 = model->coinBlock(kBlock)->numberRows();
    const double * subColumnSolution = sub[iBlock].primalColumnSolution();
    for (int iColumn=0;iColumn<numberColumns2;iColumn++) {
      int kColumn = columnBack[iColumn];
      setColumnStatus(kColumn,sub[iBlock].getColumnStatus(iColumn));
      fullColumnSolution[kColumn]=subColumnSolution[iColumn];
    }
    for (int iRow=0;iRow<numberRows2;iRow++) {
      int kRow = rowBack[iRow];
      setStatus(kRow,sub[iBlock].getStatus(iRow));
      setStatus(kRow,atLowerBound);
    }
  }
  double * fullSolution = primalRowSolution();
  CoinZeroN(fullSolution,numberRows_);
  times(1.0,fullColumnSolution,fullSolution);
  //int numberColumns=model->numberColumns();
  //for (int iColumn=0;iColumn<numberColumns;iColumn++) 
  //setColumnStatus(iColumn,ClpSimplex::superBasic);
  std::cout<<"Time before cleanup of full model "<<CoinCpuTime()-time1<<" seconds"<<std::endl;
  this->primal(1);
  std::cout<<"Total time "<<CoinCpuTime()-time1<<" seconds"<<std::endl;
  delete [] rowCounts;
  //delete [] sol;
  //delete [] lower;
  //delete [] upper;
  delete [] whichBlock;
  delete [] when;
  delete [] rowAdd;
  delete [] columnAdd;
  delete [] elementAdd;
  delete [] objective;
  delete [] first;
  delete [] sub;
  return 0;
}

Generated by  Doxygen 1.6.0   Back to index