Logo Search packages:      
Sourcecode: rsymphony version File versions  Download package

CglKnapsackCover.cpp

// Copyright (C) 2000, International Business Machines
// Corporation and others.  All Rights Reserved.
#if defined(_MSC_VER)
// Turn off compiler warning about long names
#  pragma warning(disable:4786)
#endif
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <cassert>
#include <cfloat>
#include <iostream>

#include "CoinHelperFunctions.hpp"
#include "CglKnapsackCover.hpp"
#include "CoinPackedVector.hpp"
#include "CoinSort.hpp"
#include "CoinPackedMatrix.hpp"
#include "OsiRowCutDebugger.hpp"
#define GUBCOVER 1
//#define PRINT_DEBUG
//#define CGL_DEBUG 1
//-----------------------------------------------------------------------------
// Generate knapsack cover cuts
//------------------------------------------------------------------- 
00026 void CglKnapsackCover::generateCuts(const OsiSolverInterface& si, OsiCuts& cs,
                            const CglTreeInfo info) const
{
  // Get basic problem information
  int nRows=si.getNumRows(); 
  int nCols=si.getNumCols(); 

  // Create working space for "canonical" knapsack inequality
  // - krow will contain the coefficients and indices of the 
  // (potentially complemented) variables in the knapsack inequality.
  // - b is the rhs of knapsack inequality.
  // - complement[i] is 1 if the index i in krow refers to the complement
  // of the variable, and 0 otherwise. 
  CoinPackedVector krow; 
  double b=0.0;
  int numberRowCutsBefore = cs.sizeRowCuts();
  int * complement= new int[nCols];
  complement_ = complement;
#if GUBCOVER==1
  elements_=new double [2*nCols];
  CoinZeroN(elements_,2*nCols);
#elif GUBCOVER==2
  int size1=4*nCols+2*numberCliques_;
  int size2=2*nCols+5*numberCliques_+5;
  elements_=reinterpret_cast<double *>(new int [size2+size1*sizeof(double)/sizeof(int)]);
  CoinZeroN(elements_,2*nCols+2*numberCliques_);
  int * restInd = reinterpret_cast<int *> (elements_+size1);
  CoinFillN(restInd,nCols,-2);
#endif
    
  // Create a local copy of the column solution (colsol), call it xstar, and
  // inititalize it. 
  // Assumes the lp-relaxation has been solved, and the solver interface
  // has a meaningful colsol.
  double * xstar= new double[nCols];
  solver_ = &si;

  // To allow for vub knapsacks
  int * thisColumnIndex = new int [nCols];
  double * thisElement = new double[nCols];
  int * back = new int[nCols];
  
  const double *colsol = si.getColSolution(); 
  int k; 
  // For each row point to vub variable
  // -1 if no vub
  // -2 if can skip row for knapsacks

  int * vub = new int [nRows];

  // Now vubValue are for positive coefficients and vlbValue for negative
  // when L row
  // For each column point to vub row
  int * vubRow = new int [nCols];
  double * vubValue = new double [nRows];

  // For each column point to vlb row
  int * vlbRow = new int [nCols];
  double * vlbValue = new double [nRows];

  // Take out all fixed
  double * effectiveUpper = new double [nRows];
  double * effectiveLower = new double [nRows];
  const double * colUpper = si.getColUpper();
  const double * colLower = si.getColLower();
  for (k=0; k<nCols; k++){
    back[k]=-1;
    xstar[k]=colsol[k];
    if (xstar[k]>colUpper[k])
      xstar[k]=colUpper[k];
    else if (xstar[k]<colLower[k])
      xstar[k]=colLower[k];
    complement[k]=0;
    vubRow[k]=-1;
    vlbRow[k]=-1;
    if (si.isBinary(k)) {
      if (si.isFreeBinary(k)) {
      vubRow[k]=-2;
      vlbRow[k]=-2;
      } else {
      vubRow[k]=-10;
      vlbRow[k]=-10;
      }
    } else if (colUpper[k]==colLower[k]) {
      vubRow[k]=-10; // fixed
      vlbRow[k]=-10; // fixed
    }
  }

  int rowIndex;
  int numberVub=0;

  const CoinPackedMatrix * matrixByRow = si.getMatrixByRow();
  const double * elementByRow = matrixByRow->getElements();
  const int * column = matrixByRow->getIndices();
  const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
  const int * rowLength = matrixByRow->getVectorLengths();
  const double * rowUpper = si.getRowUpper();
  const double * rowLower = si.getRowLower();

  // Scan all rows looking for possibles

  for (rowIndex=0;rowIndex<nRows;rowIndex++) {
    vub[rowIndex]=-1;
    int start = rowStart[rowIndex];
    int end = start + rowLength[rowIndex];
    double upRhs = rowUpper[rowIndex]; 
    double loRhs = rowLower[rowIndex]; 
    double multiplier=0.0;
    if (upRhs>1.0e20)
      multiplier=-1.0;
    else if (loRhs<-1.0e20)
      multiplier=1.0;
    int numberContinuous=0;
    int numberBinary=0;
    int iCont=-1;
    double sum = 0.0;
    double valueContinuous=0.0;
    double valueBinary=0.0;
    int iBinary=-1;
    int j;
    for (j=start;j<end;j++) {
      int iColumn=column[j];
      double value = elementByRow[j];
      if (colUpper[iColumn]>colLower[iColumn]) {
      sum += xstar[iColumn]*value;
      if (vubRow[iColumn]==-2&&value*multiplier>0.0) {
        // binary
        numberBinary++;
        valueBinary=value;
        iBinary=iColumn;
      } else if (vlbRow[iColumn]==-2&&value*multiplier<0.0) {
        // binary
        numberBinary++;
        valueBinary=value;
        iBinary=iColumn;
      } else if (vubRow[iColumn]==-1) {
        // only use if not at bound
          //        if (colsol[iColumn]<colUpper[iColumn]-1.0e-6&&
          //  colsol[iColumn]>colLower[iColumn]+1.0e-6) {
          // possible
          iCont=iColumn;
          numberContinuous++;
          valueContinuous=value;
            //} else {
          //// ** needs more thought
          //numberContinuous ++;
          //iCont=-1;
            //}
      } else {
        // ** needs more thought
        numberContinuous ++;
        iCont=-1;
        //if (colsol[iColumn]<colUpper[iColumn]-1.0e-6&&
          //  colsol[iColumn]>colLower[iColumn]+1.0e-6) {
          //// already assigned
          //numberContinuous ++;
          //iCont=-1;
        //}
      }
      } else {
      // fixed
      upRhs -= colLower[iColumn]*value;
      loRhs -= colLower[iColumn]*value;
      }
    }
    // see if binding
    effectiveUpper[rowIndex] = upRhs;
    effectiveLower[rowIndex] = loRhs;
    bool possible = false;
    if (fabs(sum-upRhs)<1.0e-5) {
      possible=true;
    } else {
      effectiveUpper[rowIndex]=DBL_MAX;
    }
    if (fabs(sum-loRhs)<1.0e-5) {
      possible=true;
    } else {
      effectiveLower[rowIndex]=-DBL_MAX;
    }
    if (possible&&numberBinary&&numberBinary+numberContinuous<=maxInKnapsack_) {
      // binding with binary
      if(numberContinuous==1&&iCont>=0&&numberBinary==1) {
      // vub
#ifdef PRINT_DEBUG
      printf("vub/vlb (by row %d) %g <= 0-1 %g * %d + %g * %d <= %g\n",
             rowIndex,effectiveLower[rowIndex],valueBinary,iBinary,
             valueContinuous,iCont,effectiveUpper[rowIndex]);
#endif
        if (multiplier*valueContinuous>0.0) {
          vubValue[rowIndex] = valueContinuous;
          vubRow[iCont]=rowIndex;
        } else {
          vlbValue[rowIndex] = valueContinuous;
          vlbRow[iCont]=rowIndex;
        }
      vub[rowIndex]=iCont;
      numberVub++;
      } else if (numberBinary>1) {
      // could be knapsack
      vub[rowIndex]=-1;
      } else {
      // no point looking at this row
      vub[rowIndex]=-2;
      }
    } else {
      if (!possible||numberBinary+numberContinuous>maxInKnapsack_)
      vub[rowIndex]=-2;      // no point looking at this row
    }
  }
  // Main loop
  int numCheck = 0;
  int* toCheck = 0;
  if (!rowsToCheck_) {
     toCheck = new int[nRows];
     CoinIotaN(toCheck, nRows, 0);
     numCheck = nRows;
  } else {
     numCheck = numRowsToCheck_;
     toCheck = rowsToCheck_;
  }
  // Long row
  int longRow =20; //15;
  int longRow2 =20; //15;
  if (!info.inTree) {
    longRow=25;
    //longRow2=20;
    if (!info.pass)
      longRow=30;
  }

  // Set up number of tries for each row
  int ntry;
  if (numberVub) 
    ntry=4;
  else
    ntry=2;
  //ntry=2; // switch off
  for (int ii=0; ii < numCheck; ++ii){
     rowIndex = toCheck[ii];
     if (rowIndex < 0 || rowIndex >= nRows)
      continue;
     if (vub[rowIndex]==-2)
       continue;
     whichRow_=ii;

#ifdef PRINT_DEBUG
    std::cout << "CGL: Processing row " << rowIndex << std::endl;
#endif
    
    // Get a tight row 
    // (want to be able to 
    //  experiment by turning this on and off)
    //
    // const double * pi=si.rowprice(); 
    // if (fabs(pi[row]) < epsilon_){
    //  continue;
    // }
    
    
    //////////////////////////////////////////////////////
    // Derive a "canonical"  knapsack                  //
    // inequality (in binary variables)                 //
    // from the model row in mixed integer variables    //
    //////////////////////////////////////////////////////
#ifdef CGL_DEBUG
    assert(!krow.getNumElements());
#endif
    double effectiveRhs[4];
    double rhs[4];
    double sign[]={0.0,0.0,-1.0,1.0};
    bool rowType[] = {false,true,false,true};
    effectiveRhs[0] = effectiveLower[rowIndex]; 
    rhs[0]=rowLower[rowIndex];
    effectiveRhs[2] = effectiveRhs[0];
    rhs[2]= effectiveRhs[0];
    effectiveRhs[1] = effectiveUpper[rowIndex]; 
    rhs[1]=rowUpper[rowIndex];
    effectiveRhs[3] = effectiveRhs[1];
    rhs[3]= effectiveRhs[1];
    int itry;
#ifdef CGL_DEBUG
    int kcuts[4];
    memset(kcuts,0,4*sizeof(int));
#endif
    for (itry=0;itry<ntry;itry++) {
#ifdef CGL_DEBUG
      int nlast=cs.sizeRowCuts();
#endif
      // see if to skip
      if (fabs(effectiveRhs[itry])>1.0e20)
      continue;
      int length = rowLength[rowIndex];
      memcpy(thisColumnIndex,column+rowStart[rowIndex],length*sizeof(int));
      memcpy(thisElement,elementByRow+rowStart[rowIndex],
           length*sizeof(double));
      b=rhs[itry];
      if (itry>1) {
      // see if we would be better off relaxing
      int i;
      // mark columns
      int length2=length; // for new length
      int numberReplaced=0;
      for (i=0;i<length;i++) {
        int iColumn = thisColumnIndex[i];
        back[thisColumnIndex[i]]=i;
        if (vubRow[iColumn]==-10) {
          // fixed - take out
          thisElement[i]=0.0;
        }
      }
        double dSign = sign[itry];
      for (i=0;i<length;i++) {
        int iColumn = thisColumnIndex[i];
          int iRow=-1;
          double vubCoefficient=0.0;
          double thisCoefficient=thisElement[i];
          int replace = 0;
          if (vubRow[iColumn]>=0) {
            iRow = vubRow[iColumn];
            if (vub[iRow]==iColumn&&iRow!=rowIndex) {
              vubCoefficient = vubValue[iRow];
              // break it out - may be able to do better
              if (dSign*thisCoefficient>0.0) {
                // we want valid lower bound on continuous
                if (effectiveLower[iRow]>-1.0e20&&vubCoefficient>0.0) 
                  replace=-1;
                else if (effectiveUpper[iRow]<1.0e20&&vubCoefficient<0.0) 
                  replace=1;
                // q assert (replace!=-1);
                // q assert (replace!=1);
              } else {
                // we want valid upper bound on continuous
                if (effectiveLower[iRow]>-1.0e20&&vubCoefficient<0.0) 
                  replace=-1;
                else if (effectiveUpper[iRow]<1.0e20&&vubCoefficient>0.0) 
                  replace=1;
                //assert (replace!=-1);
              }
            }
          }
          if (vlbRow[iColumn]>=0) {
            iRow = vlbRow[iColumn];
            if (vub[iRow]==iColumn&&iRow!=rowIndex) {
              vubCoefficient = vlbValue[iRow];
              // break it out - may be able to do better
              if (dSign*thisCoefficient>0.0) {
                // we want valid lower bound on continuous
                if (effectiveLower[iRow]>-1.0e20&&vubCoefficient>0.0) 
                  replace=-1;
                else if (effectiveUpper[iRow]<1.0e20&&vubCoefficient<0.0) 
                  replace=1;
                //assert (replace!=1);
              } else {
                // we want valid upper bound on continuous
                if (effectiveLower[iRow]>-1.0e20&&vubCoefficient<0.0) 
                  replace=-1;
                else if (effectiveUpper[iRow]<1.0e20&&vubCoefficient>0.0) 
                  replace=1;
                //q assert (replace!=-1);
                //assert (replace!=1);
              }
            }
          }
          if (replace) {
            double useRhs=0.0;
            numberReplaced++;
            if (replace<0)
              useRhs = effectiveLower[iRow];
            else
              useRhs = effectiveUpper[iRow];
            // now replace (just using vubRow==-2)
            // delete continuous
            thisElement[i]=0.0;
            double scale = thisCoefficient/vubCoefficient;
            // modify rhs
            b -= scale*useRhs;
            int start = rowStart[iRow];
            int end = start+rowLength[iRow];
            int j;
            for (j=start;j<end;j++) {
              int iColumn = column[j];
              if (vubRow[iColumn]==-2) {
                double change = scale*elementByRow[j];
                int iBack = back[iColumn];
                if (iBack<0) {
                  // element does not exist
                  back[iColumn]=length2;
                  thisElement[length2]=-change;
                  thisColumnIndex[length2++]=iColumn;
                } else {
                  // element does exist
                  thisElement[iBack] -= change;
                }
              }
            }
        }
      }
      if (numberReplaced) {
        length=0;
        for (i=0;i<length2;i++) {
          int iColumn = thisColumnIndex[i];
          back[iColumn]=-1; // un mark
          if (thisElement[i]) {
            thisElement[length]=thisElement[i];
            thisColumnIndex[length++]=iColumn;
          }
        }
        if (length>maxInKnapsack_)
          continue; // too long
      } else {
        for (i=0;i<length;i++) {
          int iColumn = thisColumnIndex[i];
          back[iColumn]=-1; // un mark
        }
        continue; // no good
      }
      }
      if (!deriveAKnapsack(si, cs, krow, rowType[itry], b, complement, 
                     xstar, rowIndex, 
                     length,thisColumnIndex,thisElement)) {
      
      // Reset local data and continue to the next iteration 
      // of the rowIndex-loop
      for(k=0; k<krow.getNumElements(); k++) {
        if (complement[krow.getIndices()[k]]){
          xstar[krow.getIndices()[k]]= 1.0-xstar[krow.getIndices()[k]];
          complement[krow.getIndices()[k]]=0;        
        }
      }
      krow.setVector(0,NULL,NULL);
      continue;
      }
#ifdef PRINT_DEBUG
      {
      // Get the sense of the row
      int i;
      printf("rhs sense %c rhs %g\n",si.getRowSense()[rowIndex],
             si.getRightHandSide()[rowIndex]);
      const int * indices = si.getMatrixByRow()->getVector(rowIndex).getIndices();
      const double * elements = si.getMatrixByRow()->getVector(rowIndex).getElements();
      // for every variable in the constraint
      for (i=0; i<si.getMatrixByRow()->getVector(rowIndex).getNumElements(); i++){
        printf("%d (s=%g) %g, ",indices[i],colsol[indices[i]],elements[i]);
      }
      printf("\n");
      }
#endif
      
      //////////////////////////////////////////////////////
      // Look for a series of                             //
      // different types of minimal covers.               //
      // If a minimal cover is found,                     //
      // lift the associated minimal cover inequality,    //
      // uncomplement the vars                            //
      // and add it to the cut set.                       //
      // After the last type of cover is tried,           //
      // restore xstar values                             //
      //////////////////////////////////////////////////////
      
      //////////////////////////////////////////////////////
      // Try to generate a violated                       //
      // minimal cover greedily from fractional vars      //
      //////////////////////////////////////////////////////
      
      CoinPackedVector cover, remainder;  
      
      
      if (findGreedyCover(rowIndex, krow, b, xstar, cover, remainder) == 1){
      
      // Lift cover inequality and add to cut set 
      if (!liftAndUncomplementAndAdd(rowUpper[rowIndex], krow, b,
                               complement, rowIndex, cover, 
                               remainder, cs)) {
        // Reset local data and continue to the next iteration 
        // of the rowIndex-loop
        // I am not sure this is needed but I am just being careful
        for(k=0; k<krow.getNumElements(); k++) {
          if (complement[krow.getIndices()[k]]){
            xstar[krow.getIndices()[k]]= 1.0-xstar[krow.getIndices()[k]];
            complement[krow.getIndices()[k]]=0;        
          }
        }
        krow.setVector(0,NULL,NULL);
        continue;
      }  
      }
      
      
      //////////////////////////////////////////////////////
      // Try to generate a violated                       //
      // minimal cover using pseudo John and Ellis logic  //
      //////////////////////////////////////////////////////
      
      // Reset the cover and remainder
      cover.setVector(0,NULL,NULL);
      remainder.setVector(0,NULL,NULL);
      
      if (findPseudoJohnAndEllisCover(rowIndex, krow, b,
                              xstar, cover, remainder) == 1){
      int n = krow.getNumElements();
      bool possible = (n<=longRow);
      if (possible) {
        // Calculate the sum of the knapsack coefficients of the cover variables 
        double sum = cover.sum();

        // Define lambda to be the "cover excess". 
        // By definition, lambda > 0. If this is not the case, something's screwy. Exit gracefully.
        double lambda = sum-b;
        if (lambda < epsilon_) {
#ifdef CGL_DEBUG
          if (lambda < -epsilon_) {
            printf("lambda < epsilon....aborting. \n");
            std::cout << "lambda " << lambda << " epsilon " << epsilon_ << std::endl;
            abort();
          } else {
#endif
            possible=false;
#ifdef CGL_DEBUG
          }
#endif
        }
      }
      if (possible) {
        CoinPackedVector atOnes;
        CoinPackedVector fracCover; // different than cover
        int nInCover = cover.getNumElements();
        const int * ind = cover.getIndices();
        const double * elsIn = cover.getElements();
        for (int i=0;i<nInCover;i++) {
          int iColumn = ind[i];
          double value = elsIn[i];
          if (xstar[iColumn]<1.0)
            fracCover.insert(iColumn,value);
          else
            atOnes.insert(iColumn,value);
        }
          liftUpDownAndUncomplementAndAdd(nCols, xstar, complement, rowIndex,
                                          n, b, fracCover,
                                          atOnes, remainder, cs);
#if 0
      } else {
        // (Sequence Independent) Lift cover inequality and add to cut set 
        if (!liftAndUncomplementAndAdd(rowUpper[rowIndex], krow, b,
                               complement, rowIndex, cover, 
                               remainder, cs)) {
          // Reset local data and continue to the next iteration 
          // of the rowIndex-loop
          // I am not sure this is needed but I am just being careful
          for(k=0; k<krow.getNumElements(); k++) {
            if (complement[krow.getIndices()[k]]){
            xstar[krow.getIndices()[k]]= 1.0-xstar[krow.getIndices()[k]];
            complement[krow.getIndices()[k]]=0;        
            }
          }
          krow.setVector(0,NULL,NULL);
          continue;
        }
#endif  
      }
      
      // Skip experiment for now...
#if 0
      // experimenting here...
      // (Sequence Dependent) Lift cover inequality and add to cut set
      seqLiftAndUncomplementAndAdd(nCols, xstar, complement, rowIndex,
                             krow.getNumElements(), b, cover, remainder,
                             cs);
#endif 
      }  
      
      
      
      //////////////////////////////////////////////////////
      // Try to generate cuts using covers of unsat       //
      // vars on reduced krows with John and Ellis logic  //
      //////////////////////////////////////////////////////
      CoinPackedVector atOnes;
      CoinPackedVector fracCover; // different than cover
      
      // reset the remainder
      remainder.setVector(0,NULL,NULL);
      
      if (expensiveCuts_||krow.getNumElements()<=longRow) {
        if (findJohnAndEllisCover(rowIndex, krow, b,
                                  xstar, fracCover, atOnes, remainder) == 1){
          
          // experimenting here...
          // Sequence Dependent Lifting up on remainders and lifting down on the
          // atOnes 
          liftUpDownAndUncomplementAndAdd(nCols, xstar, complement, rowIndex,
                                          krow.getNumElements(), b, fracCover,
                                          atOnes, remainder, cs);
        }
      }
      
      //////////////////////////////////////////////////////
      // Try to generate a violated                       //
      // minimal cover by considering the                 //
      // most violated cover problem                      //
      //////////////////////////////////////////////////////
      
      
      // reset cover and remainder
      cover.setVector(0,NULL,NULL);
      remainder.setVector(0,NULL,NULL);
      
      // if the size of the krow is "small", 
      //    use an exact algorithm to find the most violated (minimal) cover, 
      // else, 
      //    use an lp-relaxation to find the most violated (minimal) cover.
      if(krow.getNumElements()<=longRow2){
      if (findExactMostViolatedMinCover(nCols, rowIndex, krow, b,
                                xstar, cover, remainder) == 1){
        
        // Lift cover inequality and add to cut set 
        if (!liftAndUncomplementAndAdd(rowUpper[rowIndex], krow, b,
                               complement, rowIndex, cover, remainder,
                                         cs)) {
          // Reset local data and continue to the next iteration 
          // of the rowIndex-loop
          // I am not sure this is needed but I am just being careful
          for(k=0; k<krow.getNumElements(); k++) {
            if (complement[krow.getIndices()[k]]){
            xstar[krow.getIndices()[k]]= 1.0-xstar[krow.getIndices()[k]];
            complement[krow.getIndices()[k]]=0;        
            }
          }
          krow.setVector(0,NULL,NULL);
          continue;
        }  
      }
      } 
      else {
      if (findLPMostViolatedMinCover(nCols, rowIndex, krow, b,
                               xstar, cover, remainder) == 1){
        
        // Lift cover inequality and add to cut set 
        if (!liftAndUncomplementAndAdd(rowUpper[rowIndex], krow, b,
                               complement, rowIndex, cover, remainder,
                                         cs)) {
          // Reset local data and continue to the next iteration 
          // of the rowIndex-loop
          // I am not sure this is needed but I am just being careful
          for(k=0; k<krow.getNumElements(); k++) {
            if (complement[krow.getIndices()[k]]){
            xstar[krow.getIndices()[k]]= 1.0-xstar[krow.getIndices()[k]];
            complement[krow.getIndices()[k]]=0;        
            }
          }
          krow.setVector(0,NULL,NULL);
          continue;
        }  
      }
      } 
      
      
      
      // Reset xstar and complement to their initialized values for the next
      // go-around 
      int k;
      if (fabs(b-rowUpper[rowIndex]) > epsilon_) {
      for(k=0; k<krow.getNumElements(); k++) {
        if (complement[krow.getIndices()[k]]){
          xstar[krow.getIndices()[k]]= 1.0-xstar[krow.getIndices()[k]];
          complement[krow.getIndices()[k]]=0;
        }
      }
      }
      krow.setVector(0,NULL,NULL);
#ifdef CGL_DEBUG
      int nnow = cs.sizeRowCuts();
      if (nnow>nlast) {
      const OsiRowCutDebugger * debugger = si.getRowCutDebugger();
      if (debugger&&debugger->onOptimalPath(si)) {
        // check cuts okay
        int k;
        for (k=nlast;k<nnow;k++) {
          OsiRowCut rc=cs.rowCut(k);
          if(debugger->invalidCut(rc)) {
            printf("itry %d, rhs %g, length %d\n",itry,rhs[itry],length);
            int i;
            for (i=0;i<length;i++) {
            int iColumn = thisColumnIndex[i];
            printf("column %d, coefficient %g, value %g, bounds %g %g\n",iColumn,
                   thisElement[i],colsol[iColumn],colLower[iColumn],
                   colUpper[iColumn]);
            }
            if (itry>1) {
            int length = rowLength[rowIndex];
            memcpy(thisColumnIndex,column+rowStart[rowIndex],
                   length*sizeof(int));
            memcpy(thisElement,elementByRow+rowStart[rowIndex],
                   length*sizeof(double));
            printf("Original row had rhs %g and length %d\n",
                   (itry==2 ? rowLower[rowIndex] :rowUpper[rowIndex]),
                   length);
            for (i=0;i<length;i++) {
              int iColumn = thisColumnIndex[i];
              printf("column %d, coefficient %g, value %g, bounds %g %g\n",iColumn,
                   thisElement[i],colsol[iColumn],colLower[iColumn],
                   colUpper[iColumn]);
            }
            }
            assert(!debugger->invalidCut(rc));
          }
        }
      }
      if (itry>1&&nnow-nlast>kcuts[itry-2]) {
        printf("itry %d gave %d cuts as against %d for itry %d\n",
             itry,nnow-nlast,kcuts[itry-2],itry-2);
      }
      kcuts[itry]=nnow-nlast;
      nlast=nnow;
      }
#endif
    }
  }
  if (!info.inTree&&((info.options&4)==4||((info.options&8)&&!info.pass))) {
    int numberRowCutsAfter = cs.sizeRowCuts();
    for (int i=numberRowCutsBefore;i<numberRowCutsAfter;i++)
      cs.rowCutPtr(i)->setGloballyValid();
  }
  // Clean up: free allocated memory
  if (toCheck != rowsToCheck_)
     delete[] toCheck;
  delete[] xstar;
  delete[] complement;
#ifdef GUBCOVER
  delete [] elements_;
#endif
  delete [] thisColumnIndex;
  delete [] thisElement;
  delete [] back;
  delete [] vub;
  delete [] vubRow;
  delete [] vubValue;
  delete [] vlbRow;
  delete [] vlbValue;
  delete [] effectiveLower;
  delete [] effectiveUpper;
}

void
00770 CglKnapsackCover::setTestedRowIndices(int num, const int* ind)
{
   if (rowsToCheck_)
      delete[] rowsToCheck_;
   numRowsToCheck_ = num;
   if (num > 0) {
      rowsToCheck_ = new int[num];
      CoinCopyN(ind, num, rowsToCheck_);
   }
}

//------------------------------------------------------------- 
// Lift and uncomplement cut. Add cut to the cutset
//-------------------------------------------------------------------
int 
00785 CglKnapsackCover::liftAndUncomplementAndAdd(
                                  double /*rowub*/,
         CoinPackedVector & krow,
         double & b,
         int * complement,
         int /*row*/,
         CoinPackedVector & cover,
         CoinPackedVector & remainder,
         OsiCuts & cs ) const
{
  CoinPackedVector cut;
  double cutRhs = cover.getNumElements() - 1.0;
  int goodCut=1;
  
  if (remainder.getNumElements() > 0){
    // Construct lifted cover cut 
    if (!liftCoverCut( 
                  b, krow.getNumElements(), 
                  cover, remainder,
                  cut )) 
      goodCut= 0; // no cut
  }
  // The cover consists of every variable in the knapsack.
  // There is nothing to lift, so just add cut            
  else {
    cut.reserve(cover.getNumElements());
    cut.setConstant(cover.getNumElements(),cover.getIndices(),1.0);
  }
  
  if (goodCut) {
    // Uncomplement the complemented variables in the cut
    int k;
    //if (fabs(b-rowub)> epsilon_) {
    double * elements = cut.getElements();
    int * indices = cut.getIndices();
    for (k=0; k<cut.getNumElements(); k++){
      if (complement[indices[k]]) {
        // Negate the k'th element in packedVector cut
        // and correspondingly adjust the rhs
        elements[k] *= -1;
        cutRhs += elements[k];
      }
    }
    //}
    // Create row cut. Effectiveness defaults to 0.
    OsiRowCut rc;
    rc.setRow(cut);
#ifdef CGL_DEBUG
    {
      double * elements = cut.getElements();
      int * indices = cut.getIndices();
      int n=cut.getNumElements();
      for (k=0; k<n; k++){
      assert(indices[k]>=0);
      assert(elements[k]);
        assert (fabs(elements[k])>1.0e-12);
      }
    }
#endif
    rc.setLb(-DBL_MAX);
    rc.setUb(cutRhs);
    //  rc.setEffectiveness(0);
    // Todo: put in a more useful measure such as  the violation. 
    
    // Add row cut to the cut set  
#ifdef PRINT_DEBUG
    {
      int k;
      printf("cutrhs %g %d elements\n",cutRhs,cut.getNumElements());
      double * elements = cut.getElements();
      int * indices = cut.getIndices();
      for (k=0; k<cut.getNumElements(); k++){
      printf("%d %g\n",indices[k],elements[k]);
      }
    }
#endif
    cs.insert(rc);
    
    return 1;
  } else {
    return 0;
  }
}

//-------------------------------------------------------------------
// deriveAKnapsack - returns 1 if the method is able to 
//                  derive a canonical knapsack inequality
//                  in binary variables of the form ax<=b 
//                  from the rowIndex-th row of the constraint matrix.
//                  returns 0, otherwise.
//  Precondition: complement must be 0'd out!!!
//-------------------------------------------------------------------
int 
00878 CglKnapsackCover::deriveAKnapsack(
       const OsiSolverInterface & si, 
       OsiCuts & cs,
       CoinPackedVector & krow, 
       bool treatAsLRow,
       double & b,
       int *  complement,
       double *  xstar,
       int /*rowIndex*/,
       int numberElements,
       const int * index,
       const double * element) const
{

  // Fix to https://projects.coin-or.org/Cbc/ticket/30
  {
    // On investiagtion looks as if it can happen without being a bug
    if (numberElements==0) return 0;
  }

  int i;

  krow.clear();

  // if the matrixRow represent a ge inequality, then
  //     leMatrixRow == -matrixRow  // otherwise
  //     leMatrixRow == matrixRow.

  CoinPackedVector leMatrixRow(numberElements,index,element); 

  double maxKrowElement = -DBL_MAX;
  double minKrowElement = DBL_MAX;
  

  if (treatAsLRow) {
    // treat as if L row
  } else {
    // treat as if G row
    b=-b;
    std::transform(leMatrixRow.getElements(),
               leMatrixRow.getElements() + leMatrixRow.getNumElements(),
               leMatrixRow.getElements(),
               std::negate<double>());
  }
  
  // nBinUnsat is a counter for the number of unsatisfied
  // (i.e. fractional) binary vars  
  int nBinUnsat =0;
  const double * colupper = si.getColUpper();
  const double * collower = si.getColLower();
  
  // At this point, leMatrixRow and b represent a le inequality in general
  // variables. 
  // To derive a canonical knapsack inequality in free binary variable,
  // process out the continuous & non-binary integer & fixed binary variables.
  // If the non-free-binary variables can be appropriately bounded, 
  // net them out of the constraint, otherwise abandon this row and return 0.

  const int * indices = leMatrixRow.getIndices();
  const double * elements = leMatrixRow.getElements();
  // for every variable in the constraint
  for (i=0; i<leMatrixRow.getNumElements(); i++){
    // if the variable is not a free binary var
    if ( !si.isFreeBinary(indices[i]) ) {
      // and the coefficient is strictly negative
      if(elements[i]<-epsilon_){
      // and the variable has a finite upper bound
        if (colupper[indices[i]] < si.getInfinity()){
        // then replace the variable with its upper bound.
          b=b-elements[i]*colupper[indices[i]];
        } 
        else {
          return 0;
        }
      }
      // if the coefficient is strictly positive
      else if(elements[i]>epsilon_){
      // and the variable has a finite lower bound
        if (collower[indices[i]] > -si.getInfinity()){
        // then replace the variable with its lower bound.
          b=b-elements[i]*collower[indices[i]];
        }
        else {
          return 0;
        }
      }
      // note: if the coefficient is zero, the variable is not included in the 
      //       knapsack inequality.
    }
    // else the variable is a free binary var and is included in the knapsack
    // inequality. 
    // note: the variable is included regardless of its solution value to the
    // lp relaxation. 
    else{
      krow.insert(indices[i], elements[i]);

      // if the binary variable is unsatified (i.e. has fractional value),
      // increment the counter. 
      if(xstar[indices[i]] > epsilon_ && xstar[indices[i]] < onetol_)
        nBinUnsat++;

      // keep track of the largest and smallest elements in the knapsack
      // (the idea is if there is not a lot of variation in the knapsack
      // coefficients, it is unlikely we will find a violated minimal
      // cover from this knapsack so don't even bother trying) 
      if (fabs(elements[i]) > maxKrowElement) 
        maxKrowElement = fabs(elements[i]);
      if (fabs(elements[i]) < minKrowElement) 
        minKrowElement = fabs(elements[i]);
    }
  }
  
  // If there's little variation in the knapsack coefficients, return 0.
  // If there are no unsatisfied binary variables, return.
  // If there's only one binary, return.  
  // ToDo: but why return if 2 binary? ...there was some assumption in the
  // findVioMinCover..(?)   
  // Anyway probing will probably find something
  if (krow.getNumElements() < 3 ||
      nBinUnsat == 0 ||
      maxKrowElement-minKrowElement < 1.0e-3*maxKrowElement ) {
    return 0;
  }

  // However if we do decide to do when count is two - look carefully
  if (krow.getNumElements()==2) {
    const int * indices = krow.getIndices();
    double * elements = krow.getElements();
    double sum=0.0;
    for(i=0; i<2; i++){
      int iColumn = indices[i];
      sum += elements[i]*xstar[iColumn];
    }
    if (sum<b-1.0e-4) {
      return 0;
    } else {

#ifdef PRINT_DEBUG
      printf("*** Doubleton Row is ");
      for(i=0; i<2; i++){
      int iColumn = indices[i];
      sum += elements[i]*xstar[iColumn];
      printf("%d (coeff = %g, value = %g} ",indices[i],
             elements[i],xstar[iColumn]);
      }
      printf("<= %g - go for it\n",b);
#endif

    }
  }


  // At this point krow and b represent a le inequality in binary variables.  
  // To obtain an le inequality with all positive coefficients, complement
  // any variable with a negative coefficient by changing the sign of 
  // the coefficient, adjusting the rhs, and adjusting xstar, the column
  // solution vector.
  {
     const int s = krow.getNumElements();
     const int * indices = krow.getIndices();
     double * elements = krow.getElements();
     for(i=0; i<s; i++){
       if (elements[i] < -epsilon_) {
         complement[indices[i]]= 1;
         elements[i] *= -1;
         b+=elements[i]; 
         xstar[indices[i]]=1.0-xstar[indices[i]];
      }
     }
  }

  // Quick feasibility check.
  // If the problem is infeasible, add an infeasible col cut to cut set
  // e.g. one that has lb > ub.
  // TODO: test this scenario in BCP
  if (b < 0 ){ 
    OsiColCut cc;
    int index = krow.getIndices()[0]; 
    const double fakeLb = colupper[index] + 1.0;;  // yes, colupper.
#ifdef CGL_DEBUG
    const double fakeUb = collower[index];
    assert( fakeUb < fakeLb );
#endif
    cc.setLbs( 1, &index, &fakeLb);
    cc.setUbs( 1, &index, &fakeLb);
    cc.setEffectiveness(DBL_MAX);
    cs.insert(cc);
#ifdef PRINT_DEBUG
    printf("Cgl: Problem is infeasible\n");
#endif
  }
  
  // At this point, krow and b represent a le inequality with postive
  // coefficients. 
  // If any coefficient a_j > b, then x_j = 0, return 0
  // If any complemented var has coef a_j > b, then x_j = 1, return 0 
  int fixed = 0;
  CoinPackedVector fixedBnd;  
  for(i=0; i<krow.getNumElements(); i++){
    if (krow.getElements()[i]> b){
      fixedBnd.insert(krow.getIndices()[i],complement[krow.getIndices()[i]]);
#ifdef PRINT_DEBUG   
      printf("Variable %i being fixed to %i due to row %i.\n",
           krow.getIndices()[i],complement[krow.getIndices()[i]],rowIndex); 
#endif
      fixed = 1;      
    }
  }

  // After all possible variables are fixed by adding a column cut with 
  // equivalent lower and upper bounds, return
  if (fixed) {
    OsiColCut cc;
    cc.setLbs(fixedBnd);
    cc.setUbs(fixedBnd);
    cc.setEffectiveness(DBL_MAX);
    return 0; 
  }  

  return 1;
}


//-------------------------------------------------------------------
// deriveAKnapsack - returns 1 if the method is able to 
//                  derive a cannonical knapsack inequality
//                  in binary variables of the form ax<=b 
//                  from the rowIndex-th row of the constraint matrix.
//                  returns 0, otherwise.
//  Precondition: complement must be 0'd out!!!
//-------------------------------------------------------------------
int 
CglKnapsackCover::deriveAKnapsack(
       const OsiSolverInterface & si, 
       OsiCuts & cs,
       CoinPackedVector & krow, 
       double & b,
       int *  complement,
       double *  xstar,
       int rowIndex,
       const CoinPackedVectorBase & matrixRow ) const
{
  // Get the sense of the row
  const char  rowsense = si.getRowSense()[rowIndex];
  
  // Skip equality and unbounded rows 
  if  (rowsense=='E' || rowsense=='N') {
    return 0; 
  }
  
  bool treatAsLRow =  (rowsense=='L');
  const int * indices = matrixRow.getIndices();
  const double * elements = matrixRow.getElements();
  int numberElements = matrixRow.getNumElements();
  return deriveAKnapsack( si, cs, krow, treatAsLRow, b, complement,
                    xstar, rowIndex, numberElements, indices,
                    elements);
}

//--------------------------------------------------
// Find a violated minimal cover from 
// a canonical form knapsack inequality by
// solving the lp relaxation of the 
// -most- violated cover problem.
// Postprocess to ensure minimality.
// -----------------------------------------
int 
01145 CglKnapsackCover::findLPMostViolatedMinCover(
      int nCols,
      int /*row*/,
      CoinPackedVector & krow,
      double & b,
      double * xstar, 
      CoinPackedVector & cover,
      CoinPackedVector & remainder) const
{
  
  // Assumes krow and b describe a knapsack inequality in canonical form

  // Given a knapsack inequality sum a_jx_j <= b, and optimal lp solution
  // xstart, a violated minimal cover inequality exists if the following 0-1
  // programming problem has an optimal objective function value (oofv) < 1
  //     oofv = min sum (1-xstar_j)z_j
  //            s.t. sum a_jz_j > b
  //            z binary
  
  // The vector z is an incidence vector, defining the cover R with the 
  // associated cover inequality:
  //    (sum j in R) x_j <= |R|-1
  
  // This problem is itself a (min version of the) knapsack problem
  // but with a unsightly strict inequalty.
  
  // To transform transform it into a max version, 
  // complement the z's, z_j=1-y_j.
  // To compensate for the strict inequality, subtract epsilon from the rhs.
  
  //     oofv = (sum (1-xstar_j))-  max sum (1-xstar)y_j
  //                        s.t. sum a_jy_j <= (sum over j)a_j - b (- EPSILON)
  //                             y binary
  
  // If oofv < 1, then a violated min cover inequality has
  // incidence vector z with elements z_j=1-y_j and rhs= num of nonzero's in 
  // z, i.e. the number of 0's in y.

  // If the size of the knapsack is "small", we solve the problem exactly. 
  // If the size of the knapsack is large, we solve the (simpler) lp relaxation
  // of the  knapsack problem and postprocess to ensure the construction of a 
  // minimimal cover.
  
  // We also assume that testing/probing/fixing based on the knapsack structure
  // is done elsewhere. Only convenient-to-do sanity checks are done here.
  // (We do not assume that data is integer.)

  double elementSum = krow.sum();

  // Redundant/useless adjusted rows should have been trapped in the 
  // transformation to the canonical form of knapsack inequality
  if (elementSum < b + epsilon_) {
    return -1; 
  }
  
  // Order krow in nonincreasing order of coefObj_j/a_j.  
  // (1-xstar_1)/a_1 >= (1-xstar_2)/a_2 >= ... >= (1-xstar_n)/a_n   
  // by defining this full-storage array "ratio" to be the external sort key.
  double * ratio= new double[nCols];
  memset(ratio, 0, (nCols*sizeof(double)));

  int i;
  for (i=0; i<krow.getNumElements(); i++){
    if (fabs(krow.getElements()[i])> epsilon_ ){
      ratio[krow.getIndices()[i]]=
       (1.0-xstar[krow.getIndices()[i]]) / (krow.getElements()[i]);
    }
    else {
      ratio[krow.getIndices()[i]] = 0.0;
    }
  }

  // ToDo: would be nice to have sortkey NOT be full-storage vector
  CoinDecrSolutionOrdered dso(ratio);
  krow.sort(dso);   

  // Find the "critical" element index "r" in the knapsack lp solution
  int r = 0;
  double sum = krow.getElements()[0];
  while ( sum <= (elementSum - b - epsilon_ ) ){
    r++;
    sum += krow.getElements()[r];
  }    
  
  // Note: It is possible the r=0, and you get a violated minimal cover 
  // if (r=0), then you've got a var with a really large coeff. compared
  //   to the rest of the row.
  // r=0 says trivially that the 
  //   sum of ALL the binary vars in the row <= (cardinality of all the set -1)
  // Note: The cover may not be minimal if there are alternate optimals to the 
  // maximization problem, so the cover must be post-processed to ensure 
  // minimality.
  
  // "r" is the critical element 
  // The lp relaxation column solution is:
  // y_j = 1 for  j=0,...,(r-1)
  // y_r = (elementSum - b - sum + krow.element()[r])/krow.element()[r] 
  // y_j = 0 for j=r+1,...,krow.getNumElements() 
  
  // The number of nonzeros in the lp column solution is r+1 
  
  // if oofv to the lp knap >= 1, then no violated min cover is possible 
  int nCover;

  double lpoofv=0.0;
  for (i=r+1; i<krow.getNumElements(); i++){
    lpoofv += (1-xstar[krow.getIndices()[i]]);
  }
  double ipofv = lpoofv + (1-xstar[krow.getIndices()[r]]);

  // Couldn't find an lp violated min cover inequality 
  if (ipofv > 1.0 - epsilon_){    
    delete [] ratio;
    return -1;
  }
  else {
    // Partition knapsack into cover and noncover (i.e. remainder)
    // pieces
    nCover = krow.getNumElements() - r;
    double coverSum =0.0;
    cover.reserve(nCover);
    remainder.reserve(r);
    
    for (i=r; i<krow.getNumElements(); i++){
      cover.insert(krow.getIndices()[i],krow.getElements()[i]);
      coverSum += krow.getElements()[i];
    }
    for (i=0; i<r; i++){
      remainder.insert(krow.getIndices()[i],krow.getElements()[i]);
    }
    
    if (coverSum <= b+1.0e-8*(1.0+fabs(b))){
#ifdef PRINT_DEBUG
      if (coverSum <= b) {
      printf("The identified cover is NOT a cover\n");
      abort();
      }
#endif
      delete [] ratio;
      return -1;
    }
    
    // Sort cover in terms of knapsack row coefficients   
    cover.sortDecrElement();
    
    
    // We have a violated cover inequality.
    // Construct a -minimal- violated cover
    // by testing and potentially tossing smallest
    // elements 
    double oneLessCoverSum = coverSum - cover.getElements()[nCover-1];
    while (oneLessCoverSum > b+1.0e-12){
      // move the excess cover member into the set of remainders
      remainder.insert(cover.getIndices()[nCover-1],
                   cover.getElements()[nCover-1]);
      cover.truncate(nCover-1);
      nCover--;
      oneLessCoverSum -= cover.getElements()[nCover-1];
    }

    if (nCover<2){
#ifdef PRINT_DEBUG
      printf("nCover < 2...aborting\n");
      abort();
#endif
      delete [] ratio;
      return -1;
    }
    
#ifdef PRINT_DEBUG   /* debug */
    printf("\
Lp relax of most violated minimal cover: row %i has cover of size %i.\n",
         row,nCover);
    //double sumCover = 0.0;
    for (i=0; i<cover.getNumElements(); i++){
      printf("index %i, element %g, xstar value % g \n",
           cover.getIndices()[i],cover.getElements()[i],
           xstar[cover.getIndices()[i]]);
      //sumCover += cover.getElements()[i];
    }
    printf("The b = %.18g, and the cover element sum is %.18g (%.18g)\n\n",
         b,cover.sum(),coverSum);
    printf("The b = %g, and the cover sum is %g\n\n", b, cover.sum());
#endif

#ifdef P0201
      double ppsum=0.0;
      for (i=0; i<nCover; i++){
        ppsum += p0201[krow.getIndices()[i]];
      }
        
      if (ppsum > nCover-1){
          printf("\
\nBad cover from lp relax of most violated cover..aborting\n");
          abort();
      }
#endif
    
    /* clean up */
    delete [] ratio;
    return  1;
  }
}


//--------------------------------------------------
// Find a violated minimal cover from 
// a canonical form knapsack inequality by
// solving the -most- violated cover problem
// and postprocess to ensure minimality
// -----------------------------------------
int 
01357 CglKnapsackCover::findExactMostViolatedMinCover(
        int nCols,
        int /*row*/,
        CoinPackedVector & krow,
        double b, 
        double *  xstar, 
        CoinPackedVector & cover,
        CoinPackedVector & remainder) const 
{
  
  // assumes the row is in canonical knapsack form 
  
  // A violated min.cover inequality exists if the
  // opt obj func value (oofv) < 1: 
  //     oofv = min sum (1-xstar_j)z_j
  //            s.t. sum a_jz_j > b
  //            x binary

  //     The vector z is the incidence vector 
  //     defines the set R and the cover inequality.
  //      (sum j in R) x_j <= |R|-1

  //    This is the min version of the knapsack problem.
  //    (note that strict inequalty...bleck)

  //    To obtain the max version, complement the z's, z_j=1-y_j and 
  //    adjust the constraint.

  //    oofv = (sum (1-xstar_j))-  max sum (1-xstar)y_j
  //                       s.t. sum a_jy_j <= (sum over j)a_j - b (- EPSILON)]
  //                   y binary

  // If oofv < 1, violated min cover inequality has
  //    incidence vector z=1-y and rhs= num of nonzero's in z, i.e.
  //    the number 0 in y.

  //    We solve the  0-1 knapsack problem by explicit ennumeration

  double elementSum = krow.sum();

  // Redundant/useless adjusted rows should have been trapped in 
  // transformation to canonical form of knapsack inequality
  if (elementSum < b + epsilon_) {
#ifdef PRINT_DEBUG
    printf("Redundant/useless adjusted row\n");
#endif
    return -1; 
  }

  // Order krow in nonincreasing order of coefObj_j/a_j.  
  // (1-xstar_1)/a_1 >= (1-xstar_2)/a_2 >= ... >= (1-xstar_n)/a_n   
  // by defining this full-storage array "ratio" to be the external sort key.  
  double * ratio= new double[nCols];
  memset(ratio, 0, (nCols*sizeof(double)));

  int i;
  {
     const int * indices = krow.getIndices();
     const double * elements = krow.getElements();
     for (i=0; i<krow.getNumElements(); i++){
      if (fabs(elements[i])> epsilon_ ){
         ratio[indices[i]]= (1.0-xstar[indices[i]]) / elements[i];
      }
      else {
         ratio[indices[i]] = 0.0;
      }
     }
  }

  // ToDo: would be nice to have sortkey NOT be full-storage vector
  CoinDecrSolutionOrdered dso(ratio);
  krow.sort(dso);   

#ifdef CGL_DEBUG
  // sanity check
  for ( i=1; i<krow.getNumElements(); i++ ) {
    double ratioim1 =  ratio[krow.getIndices()[i-1]];
    double ratioi= ratio[krow.getIndices()[i]];
    assert( ratioim1 >= ratioi );
  }  
#endif  
  
  // Recall:
  // oofv = (sum (1-xstar_j))-  max sum (1-xstar)y_j
  //           s.t. sum a_jy_j <= (sum over j)a_j - b (- epsilon_)]
  //           y binary

  double objConst = 0.0;
  double exactOptVal = -1.0;
  int * exactOptSol = new int[krow.getNumElements()];
  double * p = new double[krow.getNumElements()];
  double * w = new double[krow.getNumElements()];
  int kk;
  for (kk=0; kk<krow.getNumElements(); kk++){
    p[kk]=1.0-xstar[krow.getIndices()[kk]];
    w[kk]=krow.getElements()[kk];
    objConst+=p[kk];
  }
  
  // vectors are indexed in ratioSortIndex order 
  exactSolveKnapsack(krow.getNumElements(), (elementSum-b-epsilon_), p, w,
                 exactOptVal, exactOptSol);
  
  if(objConst-exactOptVal < 1){
    cover.reserve(krow.getNumElements());
    remainder.reserve(krow.getNumElements());

    // Partition the krow into the cover and the remainder.
    // The cover is complement of solution.
    double coverElementSum = 0;
    for(kk=0;kk<krow.getNumElements();kk++){
      if(exactOptSol[kk]==0){
        cover.insert(krow.getIndices()[kk],krow.getElements()[kk]);
        coverElementSum += krow.getElements()[kk];
      }
      else {
        remainder.insert(krow.getIndices()[kk],krow.getElements()[kk]);
      }
    }

    cover.sortDecrElement();

    // We have a violated cover inequality.
    // Construct a -minimal- violated cover
    // by testing and potentially tossing smallest
    // elements 
    double oneLessCoverElementSum =
       coverElementSum - cover.getElements()[cover.getNumElements()-1];
    while (oneLessCoverElementSum > b){
      // move the excess cover member into the set of remainders
      remainder.insert(cover.getIndices()[cover.getNumElements()-1],
                   cover.getElements()[cover.getNumElements()-1]);
      cover.truncate(cover.getNumElements()-1);
      oneLessCoverElementSum -= cover.getElements()[cover.getNumElements()-1];
    }

#ifdef PRINT_DEBUG
    printf("Exact Most Violated Cover: row %i has cover of size %i.\n",
         row,cover.getNumElements());
    //double sumCover = 0.0;
    for (i=0; i<cover.getNumElements(); i++){
      printf("index %i, element %g, xstar value % g \n",
           cover.getIndices()[i], cover.getElements()[i],
           xstar[cover.getIndices()[i]]);
      //sumCover += cover.getElements()[i];
    }
    printf("The b = %g, and the cover sum is %g\n\n", b, cover.sum() );
#endif
   
    // local clean up 
    delete [] exactOptSol;
    delete [] p;
    delete [] w;
    delete [] ratio;
    
    return  1; // found an exact one
  }

  // local clean up 
  delete [] exactOptSol;
  delete [] p;
  delete [] w;
  delete [] ratio;
  
  return 0; // didn't find an exact one

}  

//-------------------------------------------------------------------
// Find Pseudo John-and-Ellis Cover
// 
// only generates -violated- minimal covers
//-------------------------------------------------------------------
int
01531 CglKnapsackCover::findPseudoJohnAndEllisCover(
                                    int /*row*/,
     CoinPackedVector & krow,
     double & b,
     double * xstar, 
     CoinPackedVector & cover,  
     CoinPackedVector & remainder) const

{
  // semi-mimic of John&Ellis's approach without taking advantage of SOS info
  // RLH: They find a minimal cover on unsatisfied variables, but it is 
  // not guaranteed to be violated by currently solution 

  // going for functional now, will make efficient when working 
  
  // look at unstatisfied binary vars with nonzero row coefficients only
  // get row in canonical form (here row is in canonical form)
  // if complement var, complement soln val too. (already done)
  // (*) sort in increasing value of soln val
  // track who is the biggest coef and it's index.
  // if biggest > adjRhs, skip row. Bad knapsack.
  // margin = adjRhs
  // idea: if (possibly compl) soln >= .5 round up, else round down
  // they do more, but that's the essence
  // go through the elements {
  // if round down, skip
  // if round up, add to element to cover. adjust margin 
  // if current element = biggest, then get next biggest
  // if biggest > marg, you've got a cover. stop looking               
  // else try next element in the loop
  // }       
  // (*)RLH: I'm going to sort in decreasing order of soln val
  // b/c var's whose soln < .5 in can. form get rounded down 
  // and skipped. If you can get a min cover of the vars
  // whose soln is >= .5, I believe this gives the same as J&E.
  // But if not, maybe I can get something more.
       
  // (**)By checking largest value left, they ensure a minimal cover
  // on the unsatisfied variables
     
  // if you have a cover
  // sort the elements to be lifted in order of their reduced costs.
  // lift in this order.
  // ...I don't understand their lifting, so for now use sequence-indep lifting

  // J&E employ lifting up and down. 
  // Here I'm including the vars at one in the cover.
  // Adding these vars back in may cause the minimality of the cover to lost.
  // So, post-processing to establish minimality is required.
  
  cover.reserve(krow.getNumElements());
  remainder.reserve(krow.getNumElements());

  double unsatRhs = b;

  // working info on unsatisfied vars
  CoinPackedVector unsat;
  unsat.reserve(krow.getNumElements());

  // working info on vars with value one
  CoinPackedVector atOne;
  atOne.reserve(krow.getNumElements());

  // partition the (binary) variables in the canonical knapsack
  // into those at zero, those at fractions, and those at one. 
  // Note: no consideration given to whether variables are free
  // or fixed at binary values.
  // Note: continuous and integer vars have already been netted out
  // to derive the canonical knapsack form
  int i;
  for (i=0; i<krow.getNumElements(); i++){

    if (xstar[krow.getIndices()[i]] > onetol_){
      atOne.insert(krow.getIndices()[i],krow.getElements()[i]); 
      unsatRhs -= krow.getElements()[i];
    }   
    else if (xstar[krow.getIndices()[i]] >= epsilon_){
      unsat.insert(krow.getIndices()[i],krow.getElements()[i]) ;
    }
    else { 
      remainder.insert(krow.getIndices()[i],krow.getElements()[i]);
    }
  }

  // sort the indices of the unsat var in order of decreasing solution value
  CoinDecrSolutionOrdered decrSol(xstar);
  unsat.sort(decrSol);
  
#ifdef CGL_DEBUG
  // sanity check
  for (i=1; i<unsat.getNumElements(); i++){
    double xstarim1= xstar[unsat.getIndices()[i-1]];
    double xstari= xstar[unsat.getIndices()[i]];
    assert( xstarim1 >= xstari );
  }
#endif

  // get the largest coefficient among the unsatisfied variables   
  double bigCoef= 0.0;
  // double temp;
  int bigIndex = 0;
  for (i=0; i<unsat.getNumElements(); i++){
    if (unsat.getElements()[i]>bigCoef){
      bigCoef = unsat.getElements()[i];
      bigIndex = i;
    }
  }
  
  // initialize 
  i=0;
  double margin = unsatRhs;
  int gotCover=0;
  int j;
  
  // look in order through the unsatisfied vars which along with the 
  // the max element defines a cover
  while (i<unsat.getNumElements() && !gotCover){
    margin -= unsat.getElements()[i];
    
    // get the biggest row coef downstream in the given order   
    if (i == bigIndex){
      bigCoef = 0.0;
      bigIndex = 0;
      for (j=i+1; j<unsat.getNumElements(); j++){
        double temp = unsat.getElements()[j];
        if (temp > bigCoef ){
          bigCoef = temp;
          bigIndex = j;
        }
      }
    }
    
    if (bigCoef > margin+epsilon2_) gotCover = 1;
    i++;          
  }

  // J&E approach; get first single one element that fills the margin   
  if(gotCover){
    j=i;
    if (j<unsat.getNumElements()){ // need this "if" incase nUnsat=1   
      while (unsat.getElements()[j]< margin) {
        j++;
      }
      // switch members so that first nUnsat define the cover
      unsat.swap(i,j);
      i++;
    }
    
    // check that detected cover is violated 
    // (would we want to save incase it's violated later?)
    int nCover = i;
    double coverElementSum = 0.0;
    double coverXstarSum = 0.0;
    int k;
    for (k=0; k<nCover; k++){
      coverElementSum += unsat.getElements()[k];
      coverXstarSum +=  xstar[unsat.getIndices()[k]];
    }
    
    // Split the unsatisfied elements into those in the cover and those
    // not in the cover. The elements not in the cover are considered
    // remainders. Variables atOne belong to the cover

    // Test if the detected cover is violated
    if (coverXstarSum > (nCover-1) && coverElementSum > unsatRhs+epsilon2_){
      for (i=nCover; i<unsat.getNumElements(); i++) {
        remainder.insert(unsat.getIndices()[i],unsat.getElements()[i]);
      }
      unsat.truncate(nCover);
      cover = unsat;
      cover.append(atOne);

      for (k=nCover; k<cover.getNumElements(); k++){
        coverElementSum+=cover.getElements()[k];
        coverXstarSum+=xstar[cover.getIndices()[k]];
      }
 
#ifdef CGL_DEBUG     
      // Sanity check
      int size = cover.getNumElements() + remainder.getNumElements(); 
      int krowsize = krow.getNumElements();
      assert( size == krowsize );
#endif
      
      // Sort cover in terms of knapsack row coefficients   
      cover.sortDecrElement();

    // New!
    // We have a violated cover inequality.
    // Construct a -minimal- violated cover
    // by testing and potentially tossing smallest
    // elements 
    double oneLessCoverElementSum =
       coverElementSum - cover.getElements()[cover.getNumElements()-1];
    while (oneLessCoverElementSum > b){
      // move the excess cover member into the set of remainders
      remainder.insert(cover.getIndices()[cover.getNumElements()-1],
                   cover.getElements()[cover.getNumElements()-1]);
      cover.truncate(cover.getNumElements()-1);
      oneLessCoverElementSum -= cover.getElements()[cover.getNumElements()-1];
    }
  
#ifdef PRINT_DEBUG
    if (coverXstarSum > (nCover-1) && coverElementSum > b){
      printf("John and Ellis: row %i has cover of size %i.\n",
           row,cover.getNumElements());
      //double sumCover = 0.0;
      for (i=0; i<cover.getNumElements(); i++){
        printf("index %i, element %g, xstar value % g \n",
             cover.getIndices()[i], cover.getElements()[i],
             xstar[cover.getIndices()[i]]);
      }
      printf("The b = %.18g, and the cover element sum is %.18g (%.18g)\n\n",
           b,cover.sum(),coverElementSum);
    }
#endif

    }
    // if minimal cover is not violated, turn gotCover off
    else {
//    printf("heuristically found minimal cover is NOT violated by current lp solution");
      gotCover = 0;
    }          
  }

  // If no minimal cover was found, pack it in   
  if (!gotCover || cover.getNumElements() < 2) {
    return -1;
  }
  
  //printf("PseudoJohnAndEllisCover - row %d elements %d\n",
  // row,cover.getNumElements());
  return  1;
}





//-------------------------------------------------------------------
// Find a "approx" John-and-Ellis Cover
// (i.e. that this approximates John & Ellis code)
//  Test to see if we generate the same covers, and lifted cuts
// 
// generates minimal covers, not necessarily violated ones.
//-------------------------------------------------------------------
int
01778 CglKnapsackCover::findJohnAndEllisCover(
                              int /*row*/,
     CoinPackedVector & krow,
     double & b,
     double * xstar, 
     CoinPackedVector & fracCover,  
     CoinPackedVector & atOne,
     CoinPackedVector & remainder) const

{
  // John Forrest and Ellis Johnson's approach as I see it.
  // RLH: They find a minimal cover on unsatisfied variables, 
  // which may not be violated by the solution to the lp relaxation

  // "functional before efficient" is my creed.
  
  // look at unstatisfied binary vars with nonzero row coefficients only
  // get row in canonical form (here krow is in canonical form)
  // if complement var, complement soln val too. (already done)
  // (*) sort in increasing value of soln val
  // track who is the biggest coef and it's index.
  // if biggest > adjRhs, skip row. Bad knapsack.
  // margin = adjRhs
  // idea: if (possibly compl) soln >= .5 round up, else round down
  // they do more, but that's the essence
  // go through the elements {
  // if round down, skip
  // if round up, add to element to cover. adjust margin 
  // if current element = biggest, then get next biggest
  // if biggest > marg, you've got a cover. stop looking               
  // else try next element in the loop
  // }       
  // (*)RLH: I'm going to sort in decreasing order of soln val
  // b/c var's whose soln < .5 in can. form get rounded down 
  // and skipped. If you can get a min cover of the vars
  // whose soln is >= .5, I believe this gives the same as J&E.
  // But if not, maybe I can get something more.
       
  // (**)By checking largest value left, they ensure a minimal cover
  // on the unsatisfied variables
     
  // if you have a cover
  // sort the elements to be lifted in order of their reduced costs.
  // lift in this order.
  // They lift down on variables at one, in a sequence-dependent manner.
  // Partion the variables into three sets: those in the cover, those 
  // not in the cover at value one, and those remaining.
  
  fracCover.reserve(krow.getNumElements());
  remainder.reserve(krow.getNumElements());
  atOne.reserve(krow.getNumElements());

  double unsatRhs = b;

  // working info on unsatisfied vars
  CoinPackedVector unsat;
  unsat.reserve(krow.getNumElements());

  // partition the (binary) variables in the canonical knapsack
  // into those at zero, those at fractions, and those at one. 
  // 
  // essentially, temporarily fix to one the free vars with lp soln value of
  // one by calculating the "unsatRhs". Call the result the "reduced krow".
  //
  // Note: continuous and integer vars, and variables fixed at 
  // binary values have already been netted out
  // in deriving the canonical knapsack form
  int i;
  for (i=0; i<krow.getNumElements(); i++){

    if (xstar[krow.getIndices()[i]] > onetol_){
      atOne.insert(krow.getIndices()[i],krow.getElements()[i]); 
      unsatRhs -= krow.getElements()[i];
    }   
    else if (xstar[krow.getIndices()[i]] >= epsilon_){
      unsat.insert(krow.getIndices()[i],krow.getElements()[i]) ;
    }
    else { 
      remainder.insert(krow.getIndices()[i],krow.getElements()[i]);
    }
  }

  // sort the indices of the unsat var in order of decreasing solution value
  CoinDecrSolutionOrdered decrSol(xstar);
  unsat.sort(decrSol);
  
#ifdef CGL_DEBUG
  // sanity check
  for (i=1; i<unsat.getNumElements(); i++){
    double xstarim1 = xstar[unsat.getIndices()[i-1]];
    double xstari=  xstar[unsat.getIndices()[i]];
    assert( xstarim1 >= xstari );
  }
#endif

  // get the largest coefficient among the unsatisfied variables   
  double bigCoef= 0.0;
  // double temp;
  int bigIndex = 0;
  for (i=0; i<unsat.getNumElements(); i++){
    if (unsat.getElements()[i]>bigCoef){
      bigCoef = unsat.getElements()[i];
      bigIndex = i;
    }
  }
  
  // initialize 
  i=0;
  double margin = unsatRhs;
  int gotCover=0;
  int j;
  
  // look in order through the unsatisfied vars which along with the 
  // the max element defines a cover
  while (i<unsat.getNumElements() && !gotCover){
    margin -= unsat.getElements()[i];
    
    // get the biggest row coef downstream in the given order   
    if (i == bigIndex){
      bigCoef = 0.0;
      bigIndex = 0;
      for (j=i+1; j<unsat.getNumElements(); j++){
        double temp = unsat.getElements()[j];
        if (temp > bigCoef ){
          bigCoef = temp;
          bigIndex = j;
        }
      }
    }
    
    if (bigCoef > margin+epsilon2_) gotCover = 1;
    i++;          
  }

  // J&E approach; get first single one element that fills the margin   
  if(gotCover){ 
    j=i;
    if (j<unsat.getNumElements()){ // need this "if" incase nUnsat=1   
      while (unsat.getElements()[j]< margin) {
        j++;
      }
      // switch members so that first nUnsat define the cover
      unsat.swap(i,j);
      i++;
    }
    
    // DEBUG: verify we have a cover over the reduced krow
    // (may not be violated)
    int nCover = i;
    double coverElementSum = 0.0;
    int k;
    for (k=0; k<nCover; k++){
      coverElementSum += unsat.getElements()[k];
    }
    
    // Split the unsatisfied elements into those in the "reduced krow" cover
    // and those not in the cover. The elements not in the cover are
    // considered remainders. Variables atOne are reported as atOne.


    // Test if the detected cover is violated
    if (coverElementSum > unsatRhs+epsilon2_){
      for (i=nCover; i<unsat.getNumElements(); i++) {
        remainder.insert(unsat.getIndices()[i],unsat.getElements()[i]);
      }
      unsat.truncate(nCover);
      fracCover = unsat;
      // cover.append(atOne);

#ifdef CGL_DEBUG
      // Sanity check
      int size = (fracCover.getNumElements() + remainder.getNumElements() +
              atOne.getNumElements());
      int krowsize =  krow.getNumElements();
      assert( size == krowsize );
#endif
      
      // Sort cover in terms of knapsack row coefficients   
      fracCover.sortDecrElement();

    // We have a not-necessarily-violated "reduced krow" cover inequality.
    // Minimal on the "reduced krow" 

#if 0
      
      double oneLessCoverElementSum =
       coverElementSum-fracCover.getElements()[fracCover.getNumElements()-1];
      while (oneLessCoverElementSum > b){
        // move the excess cover member into the set of remainders
        remainder.insert(fracCover.getIndices()[fracCover.getNumElements()-1],
                   fracCover.getElements()[fracCover.getNumElements()-1]);
        fracCover.truncate(fracCover.getNumElements()-1);
        oneLessCoverElementSum -=
         fracCover.getElements()[fracCover.getNumElements()-1];
      }
#endif
  
#ifdef PRINT_DEBUG
      printf("More Exactly John and Ellis:");
      printf(" row %i has -reduced--fractional- cover of size %i.\n",
           row,fracCover.getNumElements());
      double sumFracCover = 0.0;
      for (i=0; i<fracCover.getNumElements(); i++){
        printf("index %i, element %g, xstar value % g \n",
             fracCover.getIndices()[i],fracCover.getElements()[i],
             xstar[fracCover.getIndices()[i]]);
        sumFracCover += fracCover.getElements()[i];
      }
      double sumAtOne = 0.0;
      printf("There are %i variables at one:\n",atOne.getNumElements());
      for (i=0; i<atOne.getNumElements(); i++){
        printf("index %i, element %g, xstar value % g \n",
             atOne.getIndices()[i],atOne.getElements()[i],
             xstar[atOne.getIndices()[i]]);
        sumAtOne += atOne.getElements()[i];
      }
      printf("The b = %g, sumAtOne = %g, unsatRhs = b-sumAtOne = %g, ",
           b, sumAtOne, unsatRhs);
      printf("and the (fractional) cover element sum is %g\n\n", sumFracCover);
#endif

    }
    // if minimal cover is not violated, turn gotCover off
    else {
//    printf("heuristically found minimal cover is NOT violated by current lp solution");
      gotCover = 0;
    }          
  }

  // If no minimal cover was found, pack it in   
  if (!gotCover || fracCover.getNumElements() < 2) {
    return -1;
  }
  //printf("JohnAndEllisCover - row %d elements %d\n",
  // row,fracCover.getNumElements());
  return  1;
}

//-------------------------------------------------------------------
// findGreedyCover: attempts to find a violated minimal
//                  cover using a greedy approach
//
// If a cover is found, it the cover and the remainder are 
// sorted in nonincreasing order of the coefficients.
//-------------------------------------------------------------------
int
02024 CglKnapsackCover::findGreedyCover(
                          int /*row*/,
     CoinPackedVector & krow,
     double & b,
     double * xstar,
     CoinPackedVector & cover,
     CoinPackedVector & remainder
     ) const
  // the row argument is a hold over from debugging
  // ToDo: move the print cover statement out to the mainprogram 
  // and remove the row argument

{ 
  int i;
  int gotCover =0;
  
  cover.reserve(krow.getNumElements());
  remainder.reserve(krow.getNumElements());
  
  // sort knapsack in non-increasing size of row Coefficients 
  krow.sortDecrElement();  
  
  // greedily pack them in 
  // looking only at unsatisfied vars, i.e. 0<xstar[.]<1 
  double greedyElementSum = 0.0;
  double greedyXstarSum = 0.0;
  
  for (i=0;i<krow.getNumElements();i++){
    // if xstar fractional && no cover yet, consider it for the cover 
    if (xstar[krow.getIndices()[i]] >= epsilon_ &&
      xstar[krow.getIndices()[i]] <= onetol_ &&
      !gotCover){
      greedyElementSum += krow.getElements()[i];
      greedyXstarSum += xstar[krow.getIndices()[i]];
      cover.insert(krow.getIndices()[i],krow.getElements()[i]);
      if (greedyElementSum > b+epsilon2_){
        gotCover = 1;
      }
    }
    else{
      remainder.insert(krow.getIndices()[i],krow.getElements()[i]);
    }
  }

#ifdef CGL_DEBUG
  // sanity check
  int size =  remainder.getNumElements()+cover.getNumElements();
  int krowsize = krow.getNumElements();
  assert( size==krowsize );
#endif  

  // if no violated minimal cover was found, pack it in 
  if ( (greedyXstarSum<=(cover.getNumElements()-1)+epsilon2_) ||
       (!gotCover) ||
       (cover.getNumElements() < 2)){
    return -1;
  }
  
#ifdef PRINT_DEBUG 
  printf("Greedy cover: row %i has cover of size %i\n",
       row,cover.getNumElements());
  for (i=0; i<cover.getNumElements(); i++){
    printf("index %i, element %g, xstar value % g \n", 
         cover.getIndices()[i], cover.getElements()[i],
         xstar[cover.getIndices()[i]]);
  }
  printf("The b = %g, and the cover sum is %g\n\n", b, greedyElementSum);
#endif

  return  1;
}

//------------------------------------------------------------- 
// Lift Up, Down, and Uncomplement. Add the resutling cut to the cutset
//
// In the solution to the lp relaxtion, 
// the binary variable's solution value is either 0, 1 or fractional.
//
// Input:
// The variables in fracCover form a cover, when the vars atOne take value one.
// A cover for the krow would consist of the union of the fracCover and atOne vars
// (which may not be violated, and may need to be processed to acheieve minimal-ness).
//
// Rather than take the "union" cover and lift up the remainder variables, 
// we do something a little bit more interesting with the vars at one.
//
// The ip theory says that the lifted minimal cover cut can be strengthen by
// "lifting down" the vars atOne.
// -- this is what I believe John&Ellis were doing in OSL's knapsack cover cuts
//    with a lifting heuristic.
//
//-------------------------------------------------------------------
#if 0 //def CLP_INVESTIGATE
static int nTry=0;
static int howMany[5]={0,0,0,0,0};
#endif
void 
02121 CglKnapsackCover::liftUpDownAndUncomplementAndAdd(
         int nCols,
         double * xstar, 
         int * complement,
         int /*row*/,
         int nRowElem,
         double & b,

         // the following 3 packed vectors partition the krow:

       // vars have frac soln values in lp relaxation
       // and form cover with the vars atOne
         CoinPackedVector & fracCover, 
       // vars have soln value of 1 in lp relaxation
         CoinPackedVector & atOne,
       // and together with fracCover form minimal (?) cover. 
         CoinPackedVector & remainder,
         OsiCuts & cs ) const
{
  CoinPackedVector cut;

  // reserve storage for the cut
  cut.reserve(nRowElem);
  
  // the cut coefficent for the members of the cover is 1.0
  cut.setConstant(fracCover.getNumElements(),fracCover.getIndices(),1.0);
  
  // Preserve the cutRhs which is |C|-1, where |C| is the size of the
  // fracCover.
  double cutRhs=fracCover.getNumElements()-1;

  // local variables
  // unsatRhs is the rhs for the reduced krow
  double unsatRhs = 0, sumAtOne = 0;
  int i;
  for (i=0; i<atOne.getNumElements(); i++){
    sumAtOne += atOne.getElements()[i];
  }
  unsatRhs=b-sumAtOne;

#ifdef PRINT_DEBUG
  int firstFrac = fracCover.getIndices()[0];
  if (unsatRhs<=0.0&&fabs(xstar[firstFrac])>epsilon2_) {
    printf("At one %d\n",atOne.getNumElements());
    for (i=0; i<atOne.getNumElements(); i++){
      int iColumn = atOne.getIndices()[i];
      printf("%d %g %g\n",atOne.getIndices()[i],atOne.getElements()[i],
           xstar[iColumn]);
    }
    printf("frac %d\n",fracCover.getNumElements());
    for (i=0; i<fracCover.getNumElements(); i++){
      int iColumn = fracCover.getIndices()[i];
      printf("%d %g %g\n",fracCover.getIndices()[i],fracCover.getElements()[i],
           xstar[iColumn]);
    }
  }
#endif

  //assert ( unsatRhs > 0 );

  // If there is something to lift, then calculate the lifted coefficients
  if (unsatRhs>0.0&&(remainder.getNumElements()+atOne.getNumElements())> 0){
    
    // What order to lift?
    // Take the remainder vars in decreasing order of their
    // xstar solution value. Sort remainder in order of decreasing 
    // xstar value.
    // Lift them "up"
    // (The lift "down" the variables atOne.
    CoinDecrSolutionOrdered dso1(xstar);
    remainder.sort(dso1);   

#if GUBCOVER==2
    int nClique=0;
    double * weightClique2 = NULL;
    int * indices = NULL;
    int * starts = NULL;
    if (numberCliques_) {
      int nInCover = fracCover.getNumElements();
      int nRest = remainder.getNumElements();
      const CoinPackedMatrix * matrixByRow = solver_->getMatrixByRow();
#ifdef PRINT_DEBUG
      const double * elementByRow = matrixByRow->getElements();
#endif
      const int * column = matrixByRow->getIndices();
      const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
      const int * rowLength = matrixByRow->getVectorLengths();
#ifdef PRINT_DEBUG
      const double * rowUpper = solver_->getRowUpper();
      const double * rowLower = solver_->getRowLower();
#endif
      int numberColumns = solver_->getNumCols();
      double * els = elements_;
      double * els2 = els+numberColumns;
      double * weightClique = els2+numberColumns;
      weightClique2 = weightClique+numberCliques_;
      double * temp = weightClique2+2*numberColumns;
      int * count = reinterpret_cast<int *>(temp);
      indices = reinterpret_cast<int *> (temp+numberCliques_);
      int * whichClique = indices+numberColumns;
      for (i=rowStart[whichRow_];i<rowStart[whichRow_]+rowLength[whichRow_];i++) {
      int iColumn = column[i];
      indices[iColumn]=-1;
#ifdef PRINT_DEBUG
      els2[iColumn]=elementByRow[i];
#endif
      }
      const int * ind;
      ind = fracCover.getIndices();
#ifdef PRINT_DEBUG
      const double * elsIn;
      elsIn = fracCover.getElements();
#endif
      // Deal with complemented and cliques later
      for (i=0;i<nInCover;i++) {
      int iColumn = ind[i];
#ifdef PRINT_DEBUG
      els[iColumn]=elsIn[i];
#endif
      if (oneFixStart_[iColumn]>=0&&!complement_[iColumn]) {
        //printf("Cover column %d, xstar %g ",iColumn,xstar[iColumn]); 
        for (int j=oneFixStart_[iColumn];j<zeroFixStart_[iColumn];j++) {
          int iClique = whichClique_[j];
          //printf("(clique %d %g => ",iClique,weightClique[iClique]);
          double value=weightClique[iClique];
          if (!value) {
            whichClique[nClique++] =iClique;
            count[iClique]=0;
          }
          count[iClique]++;
          value += 3.0;
          weightClique[iClique]=value;
          //printf("%g) ",weightClique[iClique]);
        }
        //printf("\n");
      }
      }
      ind = remainder.getIndices();
#ifdef PRINT_DEBUG
      elsIn = remainder.getElements();
#endif
      for (i=0;i<nRest;i++) {
      int iColumn = ind[i];
#ifdef PRINT_DEBUG
      els[iColumn]=elsIn[i];
#endif
      double value = xstar[iColumn];
      if (fabs(value-floor(value+0.5))>1.0e-5)
        value=3.0;
      else 
        value=0.99;
      if (oneFixStart_[iColumn]>=0&&!complement_[iColumn]) {
        //printf("Column %d, xstar %g ",iColumn,xstar[iColumn]); 
        for (int j=oneFixStart_[iColumn];j<zeroFixStart_[iColumn];j++) {
          int iClique = whichClique_[j];
          double oldValue=weightClique[iClique];
          if (!oldValue) {
            whichClique[nClique++] =iClique;
            count[iClique]=0;
          }
          count[iClique]++;
          value += oldValue;
          weightClique[iClique]=value;
          //printf("(clique %d %g => ",iClique,weightClique[iClique]);
          //printf("%g) ",weightClique[iClique]);
        }
        //printf("\n");
      }
      }
      // But only look at cliques with more than one entry
      int nnClique=0;
      for (i=0;i<nClique;i++) {
      int iClique=whichClique[i];
      if (count[iClique]>1) 
        whichClique[nnClique++]=iClique;
      else
        weightClique[iClique]=0.0;
      }
      nClique=nnClique;
      ind = fracCover.getIndices();
      for (i=0;i<nInCover;i++) {
      int iColumn = ind[i];
      if (oneFixStart_[iColumn]>=0&&!complement_[iColumn]) {
        double value=3.1;
        int jClique=-1;
        for (int j=oneFixStart_[iColumn];j<zeroFixStart_[iColumn];j++) {
          int iClique = whichClique_[j];
          if(weightClique[iClique]>value) {
            jClique=iClique;
            value=weightClique[iClique];
          }
        }
        if (jClique>=0) {
          indices[iColumn]=jClique;
          count[jClique]=-1;
        } else {
          indices[iColumn]=-2;
        }
      }
      }
      ind = remainder.getIndices();
      for (i=0;i<nRest;i++) {
      int iColumn = ind[i];
      if (oneFixStart_[iColumn]>=0&&!complement_[iColumn]) {
        double value=1.1;
        int jClique=-1;
        for (int j=oneFixStart_[iColumn];j<zeroFixStart_[iColumn];j++) {
          int iClique = whichClique_[j];
          if(weightClique[iClique]>value) {
            jClique=iClique;
            value=weightClique[iClique];
          }
        }
        if (jClique>=0) {
          indices[iColumn]=jClique;
          count[jClique]=-1;
        } else {
          indices[iColumn]=-2;
        }
      }
      }
#ifdef PRINT_DEBUG
      bool interesting = false;
#endif
      nnClique=0;
      for (i=0;i<nClique;i++) {
      int iClique=whichClique[i];
      if (count[iClique]<0) {
#ifdef PRINT_DEBUG
        if (!interesting) {
          interesting=true;
          printf("%d cover, %d remainder - b = %g (rhs %g,%g)",
               nInCover,nRest,b,rowLower[whichRow_],
               rowUpper[whichRow_]);
          for (int k=rowStart[whichRow_];k<rowStart[whichRow_]+rowLength[whichRow_];k++) {
            int iColumn = column[k];
            printf(" (%d,%g) ",iColumn,elementByRow[k]);
          }
          printf("\n");
        }
        printf("Clique %d weight %g - ",iClique,weightClique[iClique]);
        for (int j=0;j<numberColumns;j++) {
          if (indices[j]==iClique) {
            printf("%d,%g (real el %g),%g) ",j,els[j],els2[j],xstar[j]);
          }
        }
        printf("\n");
#endif
        whichClique[nnClique++]=iClique;
      }
      weightClique[iClique]=0.0;
      }
      nClique=nnClique;
      if (nClique) {
      // Space for columns in each clique
      starts = whichClique + numberCliques_;
      int * current = starts + nClique+1;
      int * nNow = current+nClique+1;
      int * stack = nNow+nClique+1;
      int * which = stack+nClique+3;
      CoinZeroN(current,3*nClique+5);
      nnClique=0;
      for (i=0;i<numberColumns;i++) {
        int iClique=indices[i];
        if (iClique>=0) {
          int back = count[iClique];
          if (back<0) {
            // first
            back=nnClique;
            count[iClique]=nnClique;
            whichClique[nnClique++]=iClique;
            current[iClique]=0;
          }
          current[iClique]++;
          weightClique[back] -= xstar[i];
        }
      }
      assert (nnClique==nClique);
      CoinSort_2(weightClique,weightClique+nClique,whichClique);
      int n=0;
      for (i=0;i<nClique;i++) {
        starts[i]=n;
        int iClique = whichClique[i];
        count[iClique]=i;
        n += current[iClique];
      }
      starts[nClique]=n;
      for (i=0;i<nClique;i++) {
        current[i]=starts[i]; // make start
        nNow[i]=0;
      }
      starts[nClique]=n;
      which[n]=-1;
      // Now fracCover in
      ind = fracCover.getIndices();
      for (i=0;i<nInCover;i++) {
        int iColumn = ind[i];
        int iClique=indices[iColumn];
        if (iClique>=0) {
          int back = count[iClique];
          int put = current[back];
          current[back]++;
          which[put]=iColumn;
          indices[iColumn]=back;
          nNow[back]++; // already in
        }
      }
      // Next remainder (maybe should split into nonzero and zero)
      // and add atOnes in middle
      // *** NEED to sort so best gub first
      ind = remainder.getIndices();
      for (i=0;i<nRest;i++) {
        int iColumn = ind[i];
        int iClique=indices[iColumn];
        if (iClique>=0) {
          int back = count[iClique];
          int put = current[back];
          current[back]++;
          which[put]=iColumn;
          indices[iColumn]=back;
        }
      }
#ifdef CLP_INVESTIGATE
      nTry++;
      int k=CoinMin(nClique,4);
      howMany[k]++;
      if ((nTry%100)==0) {
        printf("TRY %d ",nTry);
        for (i=1;i<5;i++)
          if (howMany[i])
            printf("(%d cliques -> %d) ",i,howMany[i]);
        printf("\n");
      }
#endif
      }
    }
#endif
    
    // a is the part of krow corresponding to vars which have been lifted
    // alpha are the lifted coefficients with explicit storage of lifted zero
    // coefficients the a.getIndices() and alpha.getIndices() are identical
    CoinPackedVector a(fracCover);
    CoinPackedVector alpha;
    int i;
    for (i=0; i<fracCover.getNumElements(); i++){
      alpha.insert(fracCover.getIndices()[i],1.0);
    }
    // needed as an argument for exactSolveKnapsack
    int * x = new int[nRowElem];
    double psi_j=0.0;
    
    // Order alpha and a in nonincreasing order of alpha_j/a_j.  
    // alpha_1/a_1 >= alpha_2/a_2 >= ... >= alpha_n/a_n   
    // by defining this full-storage array "ratio" to be the external sort key.
    // right now external sort key must be full-storage.

    double * ratio= new double[nCols];
    memset(ratio, 0, (nCols*sizeof(double)));

#ifdef CGL_DEBUG
    double alphasize = alpha.getNumElements();
    double asize = a.getNumElements();
    assert( alphasize == asize );
#endif
    
    for (i=0; i<a.getNumElements(); i++){
      if (fabs(a.getElements()[i])> epsilon_ ){
        ratio[a.getIndices()[i]]=alpha.getElements()[i]/a.getElements()[i];
      }
      else {
        ratio[a.getIndices()[i]] = 0.0;
      }
    }

    CoinDecrSolutionOrdered dso2(ratio);
    a.sort(dso2);   
    alpha.sort(dso2);
    
#ifdef CGL_DEBUG
    // sanity check
    for ( i=1; i<a.getNumElements(); i++ ) {
      int alphai=  alpha.getIndices()[i];
      int ai = a.getIndices()[i];
      assert( alphai == ai);
    }  
#endif  
    
#if GUBCOVER==2
    int * current = starts + nClique+1;
    int * nNow = current+nClique+1;
    int * stack = nNow+nClique+1;
    int * which = stack+nClique+3;
#endif
    // Loop through the remainder variables to be lifted "up", and lift.
    int j;
    int firstZero=remainder.getNumElements();
    for (j=0; j<firstZero; j++){
      int iColumn = remainder.getIndices()[j];
      double element = remainder.getElements()[j];
      //printf("xstar for %d is %g\n",iColumn,xstar[iColumn]);
      //if (xstar[iColumn]<1.0e-8) {
      //firstZero=j;
      //break;
      //}
      // calculate the lifted coefficient of x_j = cutRhs-psi_j
      // where 
      // psi_j =  max of the current lefthand side of the cut
      //          s.t. the reduced knapsack corresponding to vars that have
      //          been lifted <= unsatRhs-a_j
      
      // Note: For exact solve, must be sorted in
      // alpha_1/a_1>=alpha_2/a_2>=...>=alpha_n/a_n order
      // check if lifted var can take value 1 
      ratio[iColumn] = 0.0;
#if GUBCOVER==2
      int inClique = (nClique) ? indices[iColumn] : -3;
#endif
      if (unsatRhs - element >= epsilon_) {
#if GUBCOVER==2
      if (!nClique) {
#endif
        exactSolveKnapsack(alpha.getNumElements(),
                       unsatRhs-element,
                       alpha.getElements(),a.getElements(),psi_j,x);
#if GUBCOVER==2
      } else {
        // A) should sort "remainder" so strongest clique first
        // B) make more efficient
        // C) take out news in exactKnapsack
        // weightClique2 is 2*ncolumns
        // indices
        for (i=0;i<nClique;i++) {
          stack[i]=nNow[i]-1;
          int k =starts[i];
          current[i]=which[k+stack[i]];
        }
        stack[nClique]=-1;
        current[nClique]=-1;
        double oldPsi_j;
        exactSolveKnapsack(alpha.getNumElements(),
                       unsatRhs-element,
                       alpha.getElements(),a.getElements(),oldPsi_j,x);
        //#define FULL_GUB_PRINT
#ifdef FULL_GUB_PRINT
        printf("Ordinary psi %g\n",oldPsi_j);
#endif
        double biggestPsi_j=0.0;
        double nowPsi_j;
        int n1=alpha.getNumElements();
        int * indIn = alpha.getIndices();
        double * pIn = alpha.getElements();
        double * wIn = a.getElements();
        double * p = weightClique2;
        double * w = p+n1;
        int kStack=nClique-1;
#ifdef FULL_GUB_PRINT
        {
          printf ("Looking at column %d\n",iColumn);
          for (int j=0;j<nClique;j++) {
            printf("Clique %d ",j);
            for (int jj=starts[j];jj<starts[j+1];jj++)
            printf("%d ",which[jj]);
            printf("\n");
          }
        }
        if (iColumn==17) {
          printf("col %d\n",iColumn);
        }
#endif
        while (kStack>=0) {
          // Do current
          for (i=0;i<nClique;i++) {
            int k =starts[i];
            int kk=stack[i];
            if (kk>=0) {
            current[i]=which[k+kk];
            } else {
            current[i]=-3;
            }
          }
          double offsetObj=0.0;
          double testRhs=unsatRhs-element;
          int n=0;
          for (i=0;i<n1;i++) {
            int jColumn = indIn[i];
            int jClique = indices[jColumn];
            if (jClique<0) {
            // not in gub - take
            p[n]=pIn[i];
            w[n++]=wIn[i];
            } else if (jColumn==current[jClique]&&jClique!=inClique) {
            // forced in unless will go negative
            offsetObj += pIn[i];
            testRhs -= wIn[i];
            }
          }
          if (testRhs >= epsilon_) {
            exactSolveKnapsack(n,testRhs,p,w,nowPsi_j,x);
            nowPsi_j += offsetObj;
#ifdef FULL_GUB_PRINT
            printf("gub psi %g\n",nowPsi_j);
#endif
            assert (nowPsi_j>=0.0);
            if (nowPsi_j>biggestPsi_j)
            biggestPsi_j=nowPsi_j;
          } else if (testRhs >= -epsilon_) {
            // as is
            nowPsi_j = offsetObj;
#ifdef FULL_GUB_PRINT
            printf("gub psi %g (no knapsack computation)\n",nowPsi_j);
#endif
            assert (nowPsi_j>=0.0);
            if (nowPsi_j>biggestPsi_j)
            biggestPsi_j=nowPsi_j;
          } else {
#ifdef FULL_GUB_PRINT
            printf("take as zero\n");
#endif
          }
          stack[kStack]--;
          while (stack[kStack]<0) {
            stack[kStack]=nNow[kStack]-1;
            kStack--;
            if (kStack>=0) {
            stack[kStack]--;
            if (stack[kStack]>=0) {
              kStack=nClique-1;
              break;
            }
            }
          }
        }
#ifdef FULL_GUB_PRINT
        if (fabs(biggestPsi_j-oldPsi_j)>1.0e-7) {
          printf("gub ** Ordinary psi %g, gub %g\n",oldPsi_j,
               biggestPsi_j);
        }
#endif
        assert (biggestPsi_j<oldPsi_j+1.0e-6);
        psi_j = biggestPsi_j;
      }
#endif
      } else {
      // Take as zero!
      psi_j=cutRhs; //0.0;
      }
      // if the lifted coefficient is non-zero 
      // (i.e. psi_j != cutRhs), add it to the cut
      if (cutRhs-psi_j>epsilon_) {
      cut.insert(iColumn,cutRhs-psi_j);
      
      // assert the new coefficient is nonegative?
      alpha.insert(iColumn,cutRhs-psi_j);
      a.insert(iColumn,element);
      
      
      ratio[iColumn] = (cutRhs-psi_j)/element;
      CoinDecrSolutionOrdered dso(ratio);
      a.sort(dso);   
      alpha.sort(dso);    
      }
#if GUBCOVER==2
      if (inClique>=0) {
      int kStart =starts[inClique];
      int kEnd =starts[inClique+1];
      int j=nNow[inClique];
      j += kStart;
      assert (kStart<kEnd);
      assert (iColumn==which[j]);
      if (cutRhs-psi_j>epsilon_) {
        nNow[inClique]++;
      } else {
        // shuffle up (some may have already gone)
        for (int k=j+1;k<kEnd;k++) {
          which[k-1]=which[k];
          if (which[k-1]==-1)
            break;
        }
        // set to -1 at end
        which[kEnd-1]=-1;
      }
      }
#endif
    }

    // Loop throught the variables atOne and lift "down"
    for (j=0; j<atOne.getNumElements(); j++){
      // calculate the lifted coefficient of x_j = psi_j-cutRhs (now cutRhs
      // gets updated) where 
      // psi_j =  max of the current lefthand side of the cut
      //          s.t. the reduced knapsack corresponding to vars that have
      //          been lifted <= unsatRhs+a_j 
      
      // Note: For exact solve, must be sorted in
      // alpha_1/a_1>=alpha_2/a_2>=...>=alpha_n/a_n order 
      exactSolveKnapsack(alpha.getNumElements(),
                   unsatRhs+atOne.getElements()[j],
                   alpha.getElements(),a.getElements(),psi_j,x);
      alpha.insert(atOne.getIndices()[j],psi_j-cutRhs);
      a.insert(atOne.getIndices()[j],atOne.getElements()[j]);
      // if the lifted coefficient is non-zero (i.e. psi_j != cutRhs), add it
      // to the cut 
      if (fabs(psi_j-cutRhs)>epsilon_)
       cut.insert(atOne.getIndices()[j],psi_j-cutRhs);

#ifdef CGL_DEBUG
      assert ( fabs(atOne.getElements()[j])> epsilon_ );
#else
      if ( fabs(atOne.getElements()[j])<= epsilon_ ) {
      // exit gracefully
      cutRhs = DBL_MAX;
      break;
      }
#endif
      ratio[atOne.getIndices()[j]]=(psi_j-cutRhs)/atOne.getElements()[j];

      // update cutRhs and unsatRhs
      cutRhs = psi_j ;      
      unsatRhs += atOne.getElements()[j];

      CoinDecrSolutionOrdered dso(ratio);
      a.sort(dso);   
      alpha.sort(dso);    
    }

#if 0
    for (j=firstZero; j<remainder.getNumElements(); j++){
      int iColumn = remainder.getIndices()[j];
      printf("xstar for %d is %g\n",iColumn,xstar[iColumn]);
      // calculate the lifted coefficient of x_j = cutRhs-psi_j
      // where 
      // psi_j =  max of the current lefthand side of the cut
      //          s.t. the reduced knapsack corresponding to vars that have
      //          been lifted <= unsatRhs-a_j
      
      // Note: For exact solve, must be sorted in
      // alpha_1/a_1>=alpha_2/a_2>=...>=alpha_n/a_n order
      // check if lifted var can take value 1 
      if (unsatRhs - remainder.getElements()[j] < epsilon_){
      psi_j = cutRhs;
      }
      else {        
      exactSolveKnapsack(alpha.getNumElements(),
                   unsatRhs-remainder.getElements()[j],
             alpha.getElements(),a.getElements(),psi_j,x);
      }
      
      // assert the new coefficient is nonegative?
      alpha.insert(remainder.getIndices()[j],cutRhs-psi_j);
      a.insert(remainder.getIndices()[j],remainder.getElements()[j]);
      
      // if the lifted coefficient is non-zero 
      // (i.e. psi_j != cutRhs), add it to the cut
      if (fabs(cutRhs-psi_j)>epsilon_)
       cut.insert(remainder.getIndices()[j],cutRhs-psi_j);
      
      ratio[remainder.getIndices()[j]]=
       (cutRhs-psi_j)/remainder.getElements()[j];
      CoinDecrSolutionOrdered dso(ratio);
      a.sort(dso);   
      alpha.sort(dso);    
    }
#endif
    delete [] x;
    delete [] ratio;
#if GUBCOVER==2
    if (numberCliques_) {
      const CoinPackedMatrix * matrixByRow = solver_->getMatrixByRow();
      //const double * elementByRow = matrixByRow->getElements();
      const int * column = matrixByRow->getIndices();
      const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
      const int * rowLength = matrixByRow->getVectorLengths();
      //const double * rowUpper = solver_->getRowUpper();
      //const double * rowLower = solver_->getRowLower();
      int numberColumns = solver_->getNumCols();
      double * els = elements_;
      double * els2 = els+numberColumns;
      double * weightClique = els2+numberColumns;
      double * weightClique2 = weightClique+numberCliques_;
      double * temp=weightClique2+2*numberColumns;
      //int * count = reinterpret_cast<int *>(temp);
      int * indices = reinterpret_cast<int *> (temp+numberCliques_);
      //int * whichClique = indices+numberColumns;
      for (i=rowStart[whichRow_];i<rowStart[whichRow_]+rowLength[whichRow_];i++) {
      int iColumn = column[i];
      indices[iColumn]=-2;
#ifdef PRINT_DEBUG
      els2[iColumn]=0.0;
#endif
      }
      for (i=0;i<nClique;i++) 
      weightClique[i]=0.0;
      for (i=0;i<numberCliques_;i++)
      assert (!weightClique[i]);
      //int numberColumns = solver_->getNumCols();
#ifdef PRINT_DEBUG
      CoinZeroN(els,numberColumns); //temp
      for (i=0;i<numberColumns;i++) {
      assert (indices[i]==-2);
      assert (!els[i]);
      assert (!els2[i]);
      }
#endif
    }
#endif

  }

  // If the cut is violated, add it to the pool
  // if (sum over cut.getIndices())
  //    cut.element()*xstar > cover.getNumElements()-1, un-complement
  // and add it to the pool.
  double sum=0;
  for (i=0; i<cut.getNumElements(); i++){
    sum+= cut.getElements()[i]*xstar[cut.getIndices()[i]];
  }
  if (sum > cutRhs+epsilon2_){
#ifdef PRINT_DEBUG
    printf("Sequentially lifted UpDown cover cut of ");
    printf("size %i derived from fracCover of size %i.\n",
         cut.getNumElements(), fracCover.getNumElements());
    for (i=0; i<cut.getNumElements(); i++){
      printf("index %i, element %g, xstar value % g \n",
           cut.getIndices()[i],cut.getElements()[i],
           xstar[cut.getIndices()[i]]);
    }
    printf("The cutRhs = %g, and the alpha_j*xstar_j sum is %g\n\n",
         cutRhs, sum);
#endif
    
#ifdef GUBCOVER
  if (numberCliques_) {
    int n = cut.getNumElements();
    const int * ind3;
    const double * els3;
    ind3 = cut.getIndices();
    els3 = cut.getElements();
    const CoinPackedMatrix * matrixByRow = solver_->getMatrixByRow();
    const double * elementByRow = matrixByRow->getElements();
    const int * column = matrixByRow->getIndices();
    const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
    const int * rowLength = matrixByRow->getVectorLengths();
    int numberColumns = solver_->getNumCols();
    double * els = elements_;
    double * els2 = els+numberColumns;
    for (i=0;i<n;i++) 
      els[ind3[i]]=els3[i];
    for (i=rowStart[whichRow_];i<rowStart[whichRow_]+rowLength[whichRow_];i++) {
      int iColumn = column[i];
      els2[iColumn]=elementByRow[i];
    }
#if CGL_DEBUG
    bool found=false;
#endif
    for (i=0;i<n;i++) {
      int iColumn = ind3[i];
      // complement doesn't seem to work?
      if (!complement_[iColumn]) {
      if (oneFixStart_[iColumn]>=0) {
        for (int j=oneFixStart_[iColumn];j<zeroFixStart_[iColumn];j++) {
          int iClique = whichClique_[j];
          for (int k=cliqueStart_[iClique];k<cliqueStart_[iClique+1];k++) {
            int jColumn = sequenceInCliqueEntry(cliqueEntry_[k]);
            if (!els[jColumn]&&els2[jColumn]) {
            assert (jColumn!=iColumn);
            if (!complement_[jColumn]&&oneFixesInCliqueEntry(cliqueEntry_[k])) {
              //if (els2[iColumn]<0.0||els2[jColumn]<0.0)
                //printf("true els %g (c%d) and %g (c%d)\n",
                //   els2[iColumn],complement_[iColumn],
                //   els2[jColumn],complement_[jColumn]);
              if (fabs(els2[jColumn])>=fabs(els2[iColumn])) {
#if CGL_DEBUG
                if (!found) {
                  found=true;
                  printf("Good cut can be improved");
                  for (i=0;i<n;i++) 
                  printf("(%d,%g) ",ind3[i],els3[i]);
                  printf("<= %g\n",b);
                }
                printf("can add! %d %d\n",iColumn,jColumn);
#endif
                els[jColumn]=els[iColumn];
                cut.insert(jColumn,els[jColumn]);
                // recompute as may have changed
                ind3 = cut.getIndices();
              }
            }
            }
          }
        }
      }
      }
    }
    // zero out
    n = cut.getNumElements();
    ind3 = cut.getIndices();
    for (i=0;i<n;i++) 
      els[ind3[i]]=0.0;
    for (i=rowStart[whichRow_];i<rowStart[whichRow_]+rowLength[whichRow_];i++) {
      int iColumn = column[i];
      els2[iColumn]=0.0;
    }
    for (i=0;i<numberColumns;i++) {
      assert (!els[i]);
      assert (!els2[i]);
    }
  }
#endif
    // de-complement
    int k;
    const int s = cut.getNumElements();
    const int * indices = cut.getIndices();
    double * elements = cut.getElements();
    for (k=0; k<s; k++){
      if (complement[indices[k]]) {
        // Negate the k'th element in packedVector cut
        // and correspondingly adjust the rhs
        elements[k] *= -1;
        cutRhs += elements[k];
      }
    }
    
   
    // Create row cut
    OsiRowCut rc;
    rc.setRow(cut);
#ifdef CGL_DEBUG
    {
      double * elements = cut.getElements();
      int * indices = cut.getIndices();
      int n=cut.getNumElements();
      for (k=0; k<n; k++){
      assert(indices[k]>=0);
      assert(elements[k]);
        assert (fabs(elements[k])>1.0e-12);
      }
    }
#endif
    rc.setLb(-DBL_MAX);
    rc.setUb(cutRhs);
    // ToDo: what's the default effectiveness?
    //  rc.setEffectiveness(1.0);
    // Add row cut to the cut set  
#ifdef PRINT_DEBUG
    {
      int k;
      printf("cutrhs %g %d elements\n",cutRhs,cut.getNumElements());
      double * elements = cut.getElements();
      int * indices = cut.getIndices();
      for (k=0; k<cut.getNumElements(); k++){
      printf("%d %g\n",indices[k],elements[k]);
      }
    }
#endif
    cs.insert(rc);
  }
}

//-------------------------------------------------------------------
// seqLiftCoverCut:  Given a canonical knapsack inequality and a
//                cover, performs sequence-dependent lifting.
//                Reference: Nemhauser & Wolsey
//
// NW suggest a lifting heuristic order that requires an argmax operation.
// What's the strength vs performance tradeoff of using argmax over
// a heuristic that depends soley on an a-prioi ordering based on
// the optimal solution to the lp relaxation? ToDo:  Do both, and report.
//
//-------------------------------------------------------------------
void
02991 CglKnapsackCover::seqLiftAndUncomplementAndAdd(
      int nCols,
      double * xstar, 
      int * complement,
      int /*row*/,                       // row index number: used for debugging 
                                     //     and to index into row bounds
      int nRowElem,                  // number of elements in the row, aka row
                                     //     size, row length. 
      double & b,                    // rhs of the canonical knapsack
                                     //     inequality derived from row 
      CoinPackedVector & cover,       // need not be violated
      CoinPackedVector & remainder,
      OsiCuts & cs) const
{
  CoinPackedVector cut;
  
  // reserve storage for the cut
  cut.reserve(nRowElem);
  
  // the cut coefficent for the members of the cover is 1.0
  cut.setConstant(cover.getNumElements(),cover.getIndices(),1.0);
  
  // so preserve the cutRhs which is |C|-1, where |C| is the size of the cover.
  double cutRhs=cover.getNumElements()-1;
  
  // If there is something to lift, then calcualte the lifted coefficients
  if (remainder.getNumElements()> 0){
    
    // What order to lift?
    // Take the to-be-lifted vars in decreasing order of their
    // xstar solution value. Sort remainder in order of decreasing 
    // xstar value.
    CoinDecrSolutionOrdered dso1(xstar);
    remainder.sort(dso1);   
    
    // a is the part of krow corresponding to vars which have been lifted
    // alpha are the lifted coefficients with explicit storage of lifted zero
    // coefficients the a.getIndices() and alpha.getIndices() are identical
    CoinPackedVector a(cover);
    CoinPackedVector alpha;
    int i;
    for (i=0; i<cover.getNumElements(); i++){
      alpha.insert(cover.getIndices()[i],1.0);
    }
    // needed as an argument for exactSolveKnapsack
    int * x = new int[nRowElem]; 
    double psi_j=0.0;
    
    // Order alpha and a in nonincreasing order of alpha_j/a_j.  
    // alpha_1/a_1 >= alpha_2/a_2 >= ... >= alpha_n/a_n   
    // by defining this full-storage array "ratio" to be the external sort key.
    
    double * ratio= new double[nCols];
    memset(ratio, 0, (nCols*sizeof(double)));

#ifdef CGL_DEBUG
    int alphasize =  alpha.getNumElements();
    int asize = a.getNumElements();
    assert( alphasize == asize );
#endif
    
    for (i=0; i<a.getNumElements(); i++){
      if (fabs(a.getElements()[i])> epsilon_ ){
        ratio[a.getIndices()[i]]=alpha.getElements()[i]/a.getElements()[i];
      }
      else {
        ratio[a.getIndices()[i]] = 0.0;
      }
    }
    
    // ToDo: would be nice to have sortkey NOT be full-storage vector
    CoinDecrSolutionOrdered dso2(ratio);
    // RLH:  JP, Is there a more efficient way?
    // The sort is identical for a and alpha, but I'm having to sort twice
    // here, and at every iteration in the loop below.
    a.sort(dso2);   
    alpha.sort(dso2);
    
#ifdef CGL_DEBUG
    // sanity check
    for ( i=1; i<a.getNumElements(); i++ ) {
      int alphai= alpha.getIndices()[i];
      int ai = a.getIndices()[i];
      assert( alphai == ai);
    }  
#endif  
    
    // Loop through the variables to be lifted, and lift.
    int j;
    for (j=0; j<remainder.getNumElements(); j++){
      // calculate the lifted coefficient of x_j = cutRhs-psi_j
      // where psi_j =  max of the current lefthand side of the cut
      // s.t. the knapsack corresponding to vars that have been lifted <= b-a_j
      
      // Note: For exact solve, must be sorted in
      // alpha_1/a_1>=alpha_2/a_2>=...>=alpha_n/a_n order
      exactSolveKnapsack(alpha.getNumElements(),
                   b-remainder.getElements()[j],
                   alpha.getElements(),a.getElements(),psi_j,x);
      alpha.insert(remainder.getIndices()[j],cutRhs-psi_j);
      a.insert(remainder.getIndices()[j],remainder.getElements()[j]);
      // if the lifted coefficient is non-zero (i.e. psi_j != cutRhs), add it
      // to the cut 
      if (fabs(cutRhs-psi_j)>epsilon_)
       cut.insert(remainder.getIndices()[j],cutRhs-psi_j);
      
      ratio[remainder.getIndices()[j]]=
       (cutRhs-psi_j)/remainder.getElements()[j];
      CoinDecrSolutionOrdered dso(ratio);
      a.sort(dso);   
      alpha.sort(dso);    
    }
    delete [] x;
    delete [] ratio;
  }

  // If the cut is violated, add it to the pool
  // if (sum over cut.getIndices())
  //    cut.element()*xstar > cover.getNumElements()-1, un-complement
  // and add it to the pool.
  double sum=0;
  int i;
  for (i=0; i<cut.getNumElements(); i++){
    sum+= cut.getElements()[i]*xstar[cut.getIndices()[i]];
  }
  if (sum > cutRhs+epsilon2_){
#ifdef PRINT_DEBUG
    printf("Sequentially lifted cover cut of size %i derived from cover of size %i.\n",cut.getNumElements(), cover.getNumElements());
    for (i=0; i<cut.getNumElements(); i++){
      printf("index %i, element %g, xstar value % g \n", cut.getIndices()[i],cut.getElements()[i], xstar[cut.getIndices()[i]]);
    }
    printf("The cutRhs = %g, and the alpha_j*xstar_j sum is %g\n\n", cutRhs, sum);
#endif
    
#ifdef GUBCOVER
  if (numberCliques_) {
    int n = cut.getNumElements();
    const int * ind3;
    const double * els3;
    ind3 = cut.getIndices();
    els3 = cut.getElements();
    const CoinPackedMatrix * matrixByRow = solver_->getMatrixByRow();
    const double * elementByRow = matrixByRow->getElements();
    const int * column = matrixByRow->getIndices();
    const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
    const int * rowLength = matrixByRow->getVectorLengths();
    int numberColumns = solver_->getNumCols();
    double * els = elements_;
    double * els2 = els+numberColumns;
    for (i=0;i<n;i++) 
      els[ind3[i]]=els3[i];
    for (i=rowStart[whichRow_];i<rowStart[whichRow_]+rowLength[whichRow_];i++) {
      int iColumn = column[i];
      els2[iColumn]=elementByRow[i];
    }
#if CGL_DEBUG
    bool found=false;
#endif
    for (i=0;i<n;i++) {
      int iColumn = ind3[i];
      // complement doesn't seem to work?
      if (!complement_[iColumn]) {
      if (oneFixStart_[iColumn]>=0) {
        for (int j=oneFixStart_[iColumn];j<zeroFixStart_[iColumn];j++) {
          int iClique = whichClique_[j];
          for (int k=cliqueStart_[iClique];k<cliqueStart_[iClique+1];k++) {
            int jColumn = sequenceInCliqueEntry(cliqueEntry_[k]);
            if (!els[jColumn]&&els2[jColumn]) {
            assert (jColumn!=iColumn);
            if (!complement_[jColumn]&&oneFixesInCliqueEntry(cliqueEntry_[k])) {
              //if (els2[iColumn]<0.0||els2[jColumn]<0.0)
                //printf("true els %g (c%d) and %g (c%d)\n",
                //   els2[iColumn],complement_[iColumn],
                //   els2[jColumn],complement_[jColumn]);
              if (fabs(els2[jColumn])>=fabs(els2[iColumn])) {
#if CGL_DEBUG
                if (!found) {
                  found=true;
                  printf("Good cut can be improved");
                  for (i=0;i<n;i++) 
                  printf("(%d,%g) ",ind3[i],els3[i]);
                  printf("<= %g\n",b);
                }
                printf("can add! %d %d\n",iColumn,jColumn);
#endif
                els[jColumn]=els[iColumn];
                cut.insert(jColumn,els[jColumn]);
                // recompute as may have changed
                ind3 = cut.getIndices();
              }
            }
            }
          }
        }
      }
      }
    }
    // zero out
    n = cut.getNumElements();
    ind3 = cut.getIndices();
    for (i=0;i<n;i++) 
      els[ind3[i]]=0.0;
    for (i=rowStart[whichRow_];i<rowStart[whichRow_]+rowLength[whichRow_];i++) {
      int iColumn = column[i];
      els2[iColumn]=0.0;
    }
  }
#endif
    int k;
    const int s = cut.getNumElements();
    const int * indices = cut.getIndices();
    double * elements = cut.getElements();
    for (k=0; k<s; k++){
      if (complement[indices[k]]) {
        // Negate the k'th element in packedVector cut
        // and correspondingly adjust the rhs
        elements[k] *= -1;
        cutRhs += elements[k];
      }
    }
    
    // Create a row cut and add it to the cut set
    OsiRowCut rc;
    rc.setRow(cut);
#ifdef CGL_DEBUG
    {
      double * elements = cut.getElements();
      int * indices = cut.getIndices();
      int n=cut.getNumElements();
      for (k=0; k<n; k++){
      assert(indices[k]>=0);
      assert(elements[k]);
        assert (fabs(elements[k])>1.0e-12);
      }
    }
#endif
    rc.setLb(-DBL_MAX);
    rc.setUb(cutRhs);
    // ToDo: what's a meaningful effectivity?
    //  rc.setEffectiveness(1.0);
#ifdef PRINT_DEBUG
    {
      int k;
      printf("cutrhs %g\n",cutRhs);
      double * elements = cut.getElements();
      int * indices = cut.getIndices();
      for (k=0; k<cut.getNumElements(); k++){
      printf("%d %g\n",indices[k],elements[k]);
      }
    }
#endif
    cs.insert(rc);
  }
}

//-------------------------------------------------------------------
// liftCoverCut:  Given a canonical knapsack inequality and a
//                cover, constructs a lift cover cut via
//                sequence-independent lifting.
//
//                Reference: "Sequence Independent Lifting of Cover 
//                Inequalities," by Gu, Nemhauser, and Savelsbergh
//                in Integer Prog. and Combinatorial Opt, 4th Int'l
//                IPCO Conference Proceedings, Copenhagen, Denmark,
//                May 1995, pgs 452-461.
//                
//-------------------------------------------------------------------
int
03259 CglKnapsackCover::liftCoverCut(
      double & b,
      int nRowElem,
      CoinPackedVector & cover,
      CoinPackedVector & remainder,
      CoinPackedVector & cut) const
{
  int i;
  int  goodCut=1;
  // Given knapsack ax <=b, and a cover (e.g. cover corresponds to {0,...,nCover-1})
  // coverIndices are assumed in nondecr order of coverElements   
  // a_0>=a_1>=...>=a_(nCover-1)   

  // TODO: right now if the lifted coefficient is zero, 
  // then it's still in the cut. 
  // Should not carry explicit zero coefficients 

  // Calculate the sum of the knapsack coefficients of the cover variables 
  double sum = cover.sum();

  // Define lambda to be the "cover excess". 
  // By definition, lambda > 0. If this is not the case, something's screwy. Exit gracefully.
  double lambda = sum-b;
  if (lambda < epsilon_) {
#ifdef PRINT_DEBUG
    printf("lambda < epsilon....aborting. \n");
    std::cout << "lambda " << lambda << " epsilon " << epsilon_ << std::endl;
    //abort();
#else
    //std::cout << "lambda " << lambda << " exiting" << std::endl;
#endif
    return 0;
  }

  // mu is vector of partial sums: 
  //   mu[i] = sum(j=0 to i) a_j where the cover is C={0,1,..,r}
  //   mu[0] = 0, mu[1]=a_0, mu[2]=a_0+a_1, etc.
  //   and C is assumed to be sorted in nondecreasing knapsack coefficient order.
  double * mu= new double[cover.getNumElements()+1];
  double * muMinusLambda= new double[cover.getNumElements()+1];
  memset(mu, 0, (cover.getNumElements()+1)*sizeof(double));
  memset(muMinusLambda, 0, (cover.getNumElements()+1)*sizeof(double));
  
  // mu[0] = 0, mu[1]= knapsack coef of cover element 0, etc.
  muMinusLambda[0]= -lambda;
  for(i=1; i<(cover.getNumElements()+1); i++){
    mu[i]=mu[i-1]+ cover.getElements()[i-1];
    muMinusLambda[i]=mu[i]-lambda;
  }

  cut.reserve(nRowElem);
  // the cut coefficent for the members of the cover is 1.0
  cut.setConstant(cover.getNumElements(),cover.getIndices(),1.0);
  
  // if f(z) is superadditive 
  int h;
  if (muMinusLambda[1] >= cover.getElements()[1]-epsilon_){
    for (h=0; h<remainder.getNumElements(); h++){
      if (remainder.getElements()[h] <= muMinusLambda[1]+epsilon_){
        // cutCoef[nCut] is 0, so don't bother storing 
      }    
      else{  
      // Todo: searching is inefficient. sort not in cover... 
        // change so that I sort remainder before the call to lift.
        int found=0;
        i=2;
        while (!found && i<(cover.getNumElements()+1)){
          if (remainder.getElements()[h] <= muMinusLambda[i]){
#ifdef CGL_DEBUG
          bool e = cut.isExistingIndex(remainder.getIndices()[h]);
            assert( !e );
#endif
            cut.insert( remainder.getIndices()[h], i-1.0 );
            found=1;
          }
          i++;
        }
        if (!found) {
#ifdef CGL_DEBUG
          printf("Error: Unable to fix lifted coefficient\n");
        abort();
#else
        goodCut=0;
#endif
        }
      } // end else 
    }// end for each j not in C 
  } // end if f superadditive 

  // else use superadditive function g 
  else {
    int coverSizePlusOne = cover.getNumElements()+1;
    double * rho= new double[coverSizePlusOne];
    rho[0]=lambda;
    rho[cover.getNumElements()]=0.0;
    for (i=1; i<cover.getNumElements(); i++){
      rho[i]=CoinMax(0.0, cover.getElements()[i]- muMinusLambda[1]);
    }
    
    int h;
    for (h=0; h<remainder.getNumElements(); h++){
      
      int found=0; // Todo: searcing is inefficient: sort...
      i=0;
      while(!found && i<cover.getNumElements()){
        if (remainder.getElements()[h] <= muMinusLambda[i+1]){
#ifdef CGL_DEBUG
        bool notE = !cut.isExistingIndex(remainder.getIndices()[h]);
          assert( notE );
#endif
        if (i)
          cut.insert( remainder.getIndices()[h], static_cast<double>(i) );
          found=1;
        }
        else if (remainder.getElements()[h] < muMinusLambda[i+1]+rho[i+1]){
#ifdef CGL_DEBUG
        bool notE = !cut.isExistingIndex(remainder.getIndices()[h]); 
          assert( notE );
#endif
          double cutCoef = i+1 
              - (muMinusLambda[i+1]+rho[i+1]-remainder.getElements()[h])/rho[1];    
        if (fabs(cutCoef)>epsilon_)
          cut.insert( remainder.getIndices()[h], cutCoef );
          found=1;
        }
        i++;
      } // endwhile 
    } // end for j not in C
    delete [] rho;
  } // end else use g 

  delete [] muMinusLambda;
  delete [] mu;

#ifdef GUBCOVER
  if (goodCut&&numberCliques_) {
    int n = cut.getNumElements();
    const int * ind3;
    const double * els3;
    ind3 = cut.getIndices();
    els3 = cut.getElements();
    const CoinPackedMatrix * matrixByRow = solver_->getMatrixByRow();
    const double * elementByRow = matrixByRow->getElements();
    const int * column = matrixByRow->getIndices();
    const CoinBigIndex * rowStart = matrixByRow->getVectorStarts();
    const int * rowLength = matrixByRow->getVectorLengths();
    int numberColumns = solver_->getNumCols();
    double * els = elements_;
    double * els2 = els+numberColumns;
    for (i=0;i<n;i++) 
      els[ind3[i]]=els3[i];
    for (i=rowStart[whichRow_];i<rowStart[whichRow_]+rowLength[whichRow_];i++) {
      int iColumn = column[i];
      els2[iColumn]=elementByRow[i];
    }
#if CGL_DEBUG
    bool found=false;
#endif
    for (i=0;i<n;i++) {
      int iColumn = ind3[i];
      // complement doesn't seem to work?
      if (!complement_[iColumn]) {
      if (oneFixStart_[iColumn]>=0) {
        for (int j=oneFixStart_[iColumn];j<zeroFixStart_[iColumn];j++) {
          int iClique = whichClique_[j];
          for (int k=cliqueStart_[iClique];k<cliqueStart_[iClique+1];k++) {
            int jColumn = sequenceInCliqueEntry(cliqueEntry_[k]);
            if (!els[jColumn]&&els2[jColumn]) {
            assert (jColumn!=iColumn);
            if (!complement_[jColumn]&&oneFixesInCliqueEntry(cliqueEntry_[k])) {
              //if (els2[iColumn]<0.0||els2[jColumn]<0.0)
                //printf("true els %g (c%d) and %g (c%d)\n",
                //   els2[iColumn],complement_[iColumn],
                //   els2[jColumn],complement_[jColumn]);
              if (fabs(els2[jColumn])>=fabs(els2[iColumn])) {
#if CGL_DEBUG
                if (!found) {
                  found=true;
                  printf("Good cut can be improved");
                  for (i=0;i<n;i++) 
                  printf("(%d,%g) ",ind3[i],els3[i]);
                  printf("<= %g\n",b);
                }
                printf("can add! %d %d\n",iColumn,jColumn);
#endif
                els[jColumn]=els[iColumn];
                cut.insert(jColumn,els[jColumn]);
                // recompute as may have changed
                ind3 = cut.getIndices();
              }
            } else if (false&&complement_[jColumn]&&!oneFixesInCliqueEntry(cliqueEntry_[k])) {
              printf("COMP true els %g (c%d) and %g (c%d)\n",
                   els2[iColumn],complement_[iColumn],
                   els2[jColumn],complement_[jColumn]);
              printf("Good cut can be ??");
              for (i=0;i<n;i++) 
                printf("(%d,%g) ",ind3[i],els3[i]);
              printf("<= %g\n",b);
              printf("can add?? %d %d\n",iColumn,jColumn);
            }
            }
          }
        }
      }
      }
    }
    // zero out
    n = cut.getNumElements();
    ind3 = cut.getIndices();
    for (i=0;i<n;i++) 
      els[ind3[i]]=0.0;
    for (i=rowStart[whichRow_];i<rowStart[whichRow_]+rowLength[whichRow_];i++) {
      int iColumn = column[i];
      els2[iColumn]=0.0;
    }
  }
#endif
  return goodCut;
}

//-------------------------------------------------------------------
// A goto-less implementation of the Horowitz-Sahni exact solution 
// procedure for solving knapsack problem.
//
// Reference: Martello and Toth, Knapsack Problems, Wiley, 1990, p30-31.
//
// ToDo: Implement a dynamic programming appraoch for case
//       of knapsacks with integral coefficients
//-------------------------------------------------------------------
int
03489 CglKnapsackCover::exactSolveKnapsack(
       int n, 
       double c, 
       double const *pp, 
       double const *ww, 
       double & z, 
       int * x) const
{
  // The knapsack problem is to find:

  // max {sum(j=1,n) p_j*x_j st. sum (j=1,n)w_j*x_j <= c, x binary}

  // Notation:
  //     xhat : current solution vector
  //     zhat : current solution value = sum (j=1,n) p_j*xhat_j
  //     chat : current residual capacity = c - sum (j=1,n) w_j*xhat_j
  //     x    : best solution so far, n-vector.
  //     z    : value of the best solution so far =  sum (j=1,n) p_j*x_j
     

  // Input: n, the number of variables; 
  //        c, the rhs;
  //        p, n-vector of objective func. coefficients;
  //        w, n-vector of the row coeff.

  // Output: z, the optimal objective function value;
  //         x, the optimal (binary) solution n-vector;

  // Assumes items are sorted  p_1/w_1 >= p_2/w_2 >= ... >= p_n/w_n
  
  memset(x, 0, (n)*sizeof(int));
  int * xhat = new int[n+1];
  memset(xhat, 0, (n+1)*sizeof(int));
  int j;

  // set up: adding the extra element and
  // accounting for the FORTRAN vs C difference in indexing arrays.
  double * p = new double[n+2];
  double * w = new double[n+2];
  int ii;
  for (ii=1; ii<n+1; ii++){
    p[ii]=pp[ii-1];
    w[ii]=ww[ii-1];
  }

  // 1. initialize 
  double zhat = 0.0;
  z = 0.0;
  double chat = c+epsilon2_;
  p[n+1] = 0.0;
  w[n+1]= DBL_MAX;
  j=1;

  while (1){
    // 2. compute upper bound u
    // "find r = min {i: sum k=j,i w_k>chat};"
    ii=j;
    double wSemiSum = w[j];
    double pSemiSum = p[j];
    while (wSemiSum <= chat && ii<n+2){
      ii++;
      wSemiSum+=w[ii];
      pSemiSum+=p[ii];
    }
    if (ii==n+2){
      printf("Exceeded iterator limit. Aborting...\n");
      abort();
    }
    // r = ii at this point 
    wSemiSum -= w[ii];
    pSemiSum -= p[ii];
    double u = pSemiSum + floor((chat - wSemiSum)*p[ii]/w[ii]);
    
    // "if (z >= zhat + u) goto 5: backtrack;"
    if (!(z >= zhat + u)) {
      do {
        // 3. perform a forward step 
        while (w[j] <= chat){
          chat = chat - w[j];
          zhat = zhat + p[j];
          xhat[j] = 1;
          j+=1;
        }
        if (j<=n) {
          xhat[j]= 0;
          j+=1;
        }
      } while(j==n); 

      // "if (j<n) goto 2: compute_ub;"
      if (j<n)
        continue;
      
      // 4. up date the best solution so far 
      if (zhat > z) {
        z=zhat;
        int k;
        for (k=0; k<n; k++){
          x[k]=xhat[k+1];
        }
      }
      j=n;
      if (xhat[n] == 1){
        chat = chat+ w[n];
        zhat = zhat-p[n];
        xhat[n]=0;
      }
    }
    // 5. backtrack 
    // "find i=max{k<j:xhat[k]=1};"
    int i=j-1; 
    while (!(xhat[i]==1) && i>0){
      i--;
    }
    
    // "if (no such i exists) return;"
    if (i==0){
      delete [] p;
      delete [] w;
      delete [] xhat;
      return 1;
    }
    
    chat = chat + w[i];
    zhat=zhat -p[i];
    xhat[i]=0;
    j=i+1;
    // "goto 2: compute_ub;"
  }
}

//-------------------------------------------------------------------
// Default Constructor 
//-------------------------------------------------------------------
03623 CglKnapsackCover::CglKnapsackCover ()
:
CglCutGenerator(),
epsilon_(1.0e-07),
epsilon2_(1.0e-5),
onetol_(1-epsilon_),
maxInKnapsack_(50),
numRowsToCheck_(-1),
rowsToCheck_(0),
expensiveCuts_(false)
{
  numberCliques_=0;
  numberColumns_=0;
  cliqueType_=NULL;
  cliqueStart_=NULL;
  cliqueEntry_=NULL;
  oneFixStart_=NULL;
  zeroFixStart_=NULL;
  endFixStart_=NULL;
  whichClique_=NULL;
}

//-------------------------------------------------------------------
// Copy constructor 
//-------------------------------------------------------------------
03648 CglKnapsackCover::CglKnapsackCover (const CglKnapsackCover & source) :
   CglCutGenerator(source),
   epsilon_(source.epsilon_),
   epsilon2_(source.epsilon2_),
   onetol_(source.onetol_),
   maxInKnapsack_(source.maxInKnapsack_),
   numRowsToCheck_(source.numRowsToCheck_),
   rowsToCheck_(0),
   expensiveCuts_(source.expensiveCuts_)
{
   if (numRowsToCheck_ > 0) {
      rowsToCheck_ = new int[numRowsToCheck_];
      CoinCopyN(source.rowsToCheck_, numRowsToCheck_, rowsToCheck_);
   }
  numberCliques_=source.numberCliques_;
  numberColumns_=source.numberColumns_;
  if (numberCliques_) {
    cliqueType_ = new cliqueType [numberCliques_];
    CoinMemcpyN(source.cliqueType_,numberCliques_,cliqueType_);
    cliqueStart_ = new int [numberCliques_+1];
    CoinMemcpyN(source.cliqueStart_,(numberCliques_+1),cliqueStart_);
    int n = cliqueStart_[numberCliques_];
    cliqueEntry_ = new cliqueEntry [n];
    CoinMemcpyN(source.cliqueEntry_,n,cliqueEntry_);
    oneFixStart_ = new int [numberColumns_];
    CoinMemcpyN(source.oneFixStart_,numberColumns_,oneFixStart_);
    zeroFixStart_ = new int [numberColumns_];
    CoinMemcpyN(source.zeroFixStart_,numberColumns_,zeroFixStart_);
    endFixStart_ = new int [numberColumns_];
    CoinMemcpyN(source.endFixStart_,numberColumns_,endFixStart_);
    int n2=-1;
    for (int i=numberColumns_-1;i>=0;i--) {
      if (oneFixStart_[i]>=0) {
      n2=endFixStart_[i];
      break;
      }
    }
    assert (n==n2);
    whichClique_ = new int [n];
    CoinMemcpyN(source.whichClique_,n,whichClique_);
  } else {
    cliqueType_=NULL;
    cliqueStart_=NULL;
    cliqueEntry_=NULL;
    oneFixStart_=NULL;
    zeroFixStart_=NULL;
    endFixStart_=NULL;
    whichClique_=NULL;
  }
}

//-------------------------------------------------------------------
// Clone
//-------------------------------------------------------------------
CglCutGenerator *
03703 CglKnapsackCover::clone() const
{
  return new CglKnapsackCover(*this);
}

//-------------------------------------------------------------------
// Destructor 
//-------------------------------------------------------------------
03711 CglKnapsackCover::~CglKnapsackCover ()
{
   delete[] rowsToCheck_;
   deleteCliques();
}

//----------------------------------------------------------------
// Assignment operator 
//-------------------------------------------------------------------
CglKnapsackCover &
03721 CglKnapsackCover::operator=(const CglKnapsackCover& rhs)
{
   if (this != &rhs) {
      CglCutGenerator::operator=(rhs);
      epsilon_=rhs.epsilon_;
      epsilon2_=rhs.epsilon2_;
      onetol_=rhs.onetol_;
      maxInKnapsack_=rhs.maxInKnapsack_;
      delete[] rowsToCheck_;
      numRowsToCheck_ = rhs.numRowsToCheck_;
      if (numRowsToCheck_ > 0) {
       rowsToCheck_ = new int[numRowsToCheck_];
       CoinCopyN(rhs.rowsToCheck_, numRowsToCheck_, rowsToCheck_);
      } else {
       rowsToCheck_ = 0;
      }
      expensiveCuts_ = rhs.expensiveCuts_;
      deleteCliques();
      numberCliques_=rhs.numberCliques_;
      numberColumns_=rhs.numberColumns_;
      if (numberCliques_) {
      cliqueType_ = new cliqueType [numberCliques_];
      CoinMemcpyN(rhs.cliqueType_,numberCliques_,cliqueType_);
      cliqueStart_ = new int [numberCliques_+1];
      CoinMemcpyN(rhs.cliqueStart_,(numberCliques_+1),cliqueStart_);
      int n = cliqueStart_[numberCliques_];
      cliqueEntry_ = new cliqueEntry [n];
      CoinMemcpyN(rhs.cliqueEntry_,n,cliqueEntry_);
      oneFixStart_ = new int [numberColumns_];
      CoinMemcpyN(rhs.oneFixStart_,numberColumns_,oneFixStart_);
      zeroFixStart_ = new int [numberColumns_];
      CoinMemcpyN(rhs.zeroFixStart_,numberColumns_,zeroFixStart_);
      endFixStart_ = new int [numberColumns_];
      CoinMemcpyN(rhs.endFixStart_,numberColumns_,endFixStart_);
      int n2=-1;
      for (int i=numberColumns_-1;i>=0;i--) {
        if (oneFixStart_[i]>=0) {
          n2=endFixStart_[i];
          break;
        }
      }
      assert (n==n2);
      whichClique_ = new int [n];
      CoinMemcpyN(rhs.whichClique_,n,whichClique_);
      }
   }
   return *this;
}
// Create C++ lines to get to current state
std::string
03771 CglKnapsackCover::generateCpp( FILE * fp) 
{
  CglKnapsackCover other;
  fprintf(fp,"0#include \"CglKnapsackCover.hpp\"\n");
  fprintf(fp,"3  CglKnapsackCover knapsackCover;\n");
  if (maxInKnapsack_!=other.maxInKnapsack_)
    fprintf(fp,"3  knapsackCover.setMaxInKnapsack(%d);\n",maxInKnapsack_);
  else
    fprintf(fp,"4  knapsackCover.setMaxInKnapsack(%d);\n",maxInKnapsack_);
  if (expensiveCuts_ != other.expensiveCuts_) {
    if (expensiveCuts_) 
      fprintf(fp,"3  knapsackCover.switchOnExpensive();\n");
    else
      fprintf(fp,"3  knapsackCover.switchOffExpensive();\n");
  } else {
    if (expensiveCuts_) 
      fprintf(fp,"4  knapsackCover.switchOnExpensive();\n");
    else
      fprintf(fp,"4  knapsackCover.switchOffExpensive();\n");
  }
  if (getAggressiveness()!=other.getAggressiveness())
    fprintf(fp,"3  knapsackCover.setAggressiveness(%d);\n",getAggressiveness());
  else
    fprintf(fp,"4  knapsackCover.setAggressiveness(%d);\n",getAggressiveness());
  return "knapsackCover";
}
// This can be used to refresh any information
void 
03799 CglKnapsackCover::refreshSolver(OsiSolverInterface * solver)
{
#ifdef GUBCOVER
  deleteCliques();
  if (solver->getMatrixByCol())
    createCliques( *solver,2,200,false);
#endif
}
/* Creates cliques for use by probing.
   Can also try and extend cliques as a result of probing (root node).
   Returns number of cliques found.
*/
int 
03812 CglKnapsackCover::createCliques( OsiSolverInterface & si, 
                    int minimumSize, int maximumSize, 
                         bool /*extendCliques*/)
{
  int logLevel=1;
  // get rid of what is there
  deleteCliques();
  CoinPackedMatrix matrixByRow(*si.getMatrixByRow());
  int numberRows = si.getNumRows();
  numberColumns_ = si.getNumCols();

  numberCliques_=0;
  int numberEntries=0;
  int numberIntegers=0;
  int * lookup = new int[numberColumns_];
  int i;
  for (i=0;i<numberColumns_;i++) {
    if (si.isBinary(i))
      lookup[i]=numberIntegers++;
    else
      lookup[i]=-1;
  }

  int * which = new int[numberColumns_];
  int * whichRow = new int[numberRows];
  // Statistics
  int totalP1=0,totalM1=0;
  int numberBig=0,totalBig=0;
  int numberFixed=0;

  // Row copy
  const double * elementByRow = matrixByRow.getElements();
  const int * column = matrixByRow.getIndices();
  const CoinBigIndex * rowStart = matrixByRow.getVectorStarts();
  const int * rowLength = matrixByRow.getVectorLengths();

  // Column lengths for slacks
  const int * columnLength = si.getMatrixByCol()->getVectorLengths();

  const double * lower = si.getColLower();
  const double * upper = si.getColUpper();
  const double * rowLower = si.getRowLower();
  const double * rowUpper = si.getRowUpper();
  int iRow;
  for (iRow=0;iRow<numberRows;iRow++) {
    int numberP1=0, numberM1=0;
    int j;
    double upperValue=rowUpper[iRow];
    double lowerValue=rowLower[iRow];
    bool good=true;
    int slack = -1;
    for (j=rowStart[iRow];j<rowStart[iRow]+rowLength[iRow];j++) {
      int iColumn = column[j];
      int iInteger=lookup[iColumn];
      if (upper[iColumn]-lower[iColumn]<1.0e-8) {
      // fixed
      upperValue -= lower[iColumn]*elementByRow[j];
      lowerValue -= lower[iColumn]*elementByRow[j];
      continue;
      } else if (upper[iColumn]!=1.0||lower[iColumn]!=0.0) {
      good = false;
      break;
      } else if (iInteger<0) {
      good = false;
      break;
      } else {
      if (columnLength[iColumn]==1)
        slack = iInteger;
      }
      if (fabs(elementByRow[j])!=1.0) {
      good=false;
      break;
      } else if (elementByRow[j]>0.0) {
      which[numberP1++]=iColumn;
      } else {
      numberM1++;
      which[numberIntegers-numberM1]=iColumn;
      }
    }
    int iUpper = static_cast<int> (floor(upperValue+1.0e-5));
    int iLower = static_cast<int> (ceil(lowerValue-1.0e-5));
    int state=0;
    if (upperValue<1.0e6) {
      if (iUpper==1-numberM1)
      state=1;
      else if (iUpper==-numberM1)
      state=2;
      else if (iUpper<-numberM1)
      state=3;
    }
    if (!state&&lowerValue>-1.0e6) {
      if (-iLower==1-numberP1)
      state=-1;
      else if (-iLower==-numberP1)
      state=-2;
      else if (-iLower<-numberP1)
      state=-3;
    }
    if (good&&state) {
      if (abs(state)==3) {
      // infeasible
      numberCliques_ = -99999;
      break;
      } else if (abs(state)==2) {
      // we can fix all
      numberFixed += numberP1+numberM1;
      if (state>0) {
        // fix all +1 at 0, -1 at 1
        for (i=0;i<numberP1;i++)
          si.setColUpper(which[i],0.0);
        for (i=0;i<numberM1;i++)
          si.setColLower(which[numberIntegers-i-1],
                         1.0);
      } else {
        // fix all +1 at 1, -1 at 0
        for (i=0;i<numberP1;i++)
          si.setColLower(which[i],1.0);
        for (i=0;i<numberM1;i++)
          si.setColUpper(which[numberIntegers-i-1],
                         0.0);
      }
      } else {
      int length = numberP1+numberM1;
      // temp
      if (numberM1) {
        if (logLevel>1)
          printf("bad clique %d +1, %d -1\n",
               numberP1,numberM1);
        length=0;
      }
        totalP1 += numberP1;
        totalM1 += numberM1;
      if (length >= minimumSize&&length<maximumSize) {
        whichRow[numberCliques_++]=iRow;
        numberEntries += length;
      } else if (length >= maximumSize) {
        // too big
        numberBig++;
        totalBig += length;
      }
      }
    }
  }
#if 0
  if (numberCliques_<0) {
    if (logLevel)
      printf("*** Problem infeasible\n");
  } else {
    if (numberCliques_) {
      if (logLevel>1)
        printf("%d cliques of average size %g found, %d P1, %d M1\n",
               numberCliques_,
               (static_cast<double>(totalP1+totalM1))/
             (static_cast<double> (numberCliques_)),
               totalP1,totalM1);
    } else {
      if (logLevel>1)
        printf("No cliques found\n");
    }
    if (numberBig) {
      if (logLevel>1)
        printf("%d large cliques ( >= %d) found, total %d\n",
           numberBig,maximumSize,totalBig);
    }
    if (numberFixed) {
      if (logLevel)
        printf("%d variables fixed\n",numberFixed);
    }
  }
#endif
  if (numberCliques_>0) {
    cliqueType_ = new cliqueType [numberCliques_];
    cliqueStart_ = new int [numberCliques_+1];
    cliqueEntry_ = new cliqueEntry [numberEntries];
    oneFixStart_ = new int [numberColumns_];
    zeroFixStart_ = new int [numberColumns_];
    endFixStart_ = new int [numberColumns_];
    whichClique_ = new int [numberEntries];
    numberEntries=0;
    cliqueStart_[0]=0;
    for (i=0;i<numberColumns_;i++) {
      oneFixStart_[i]=-1;
      zeroFixStart_[i]=-1;
      endFixStart_[i]=-1;
    }
    int iClique;
    // Possible some have been fixed
    int numberCliques=numberCliques_;
    numberCliques_=0;
    for (iClique=0;iClique<numberCliques;iClique++) {
      int iRow=whichRow[iClique];
      whichRow[numberCliques_]=iRow;
      int numberP1=0, numberM1=0;
      int j;
      double upperValue=rowUpper[iRow];
      double lowerValue=rowLower[iRow];
      for (j=rowStart[iRow];j<rowStart[iRow]+rowLength[iRow];j++) {
      int iColumn = column[j];
      if (upper[iColumn]-lower[iColumn]<1.0e-8) {
        // fixed
        upperValue -= lower[iColumn]*elementByRow[j];
        lowerValue -= lower[iColumn]*elementByRow[j];
        continue;
      }
      if (elementByRow[j]>0.0) {
        which[numberP1++]=iColumn;
      } else {
        numberM1++;
        which[numberIntegers-numberM1]=iColumn;
      }
      }
      int iUpper = static_cast<int> (floor(upperValue+1.0e-5));
      int iLower = static_cast<int> (ceil(lowerValue-1.0e-5));
      int state=0;
      if (upperValue<1.0e6) {
      if (iUpper==1-numberM1)
        state=1;
      }
      if (!state&&lowerValue>-1.0e6) {
      state=-1;
      }
      if (abs(state)!=1)
      continue; // must have been fixed
      if (iLower==iUpper) {
      cliqueType_[numberCliques_].equality=1;
      } else {
      cliqueType_[numberCliques_].equality=0;
      }
      if (state>0) {
      for (i=0;i<numberP1;i++) {
        // 1 is strong branch
        int iColumn = which[i];
        setSequenceInCliqueEntry(cliqueEntry_[numberEntries],iColumn);
        setOneFixesInCliqueEntry(cliqueEntry_[numberEntries],true);
        numberEntries++;
        // zero counts
        oneFixStart_[iColumn]=0;
        zeroFixStart_[iColumn]=0;
      }
      for (i=0;i<numberM1;i++) {
        // 0 is strong branch
        int iColumn = which[numberIntegers-i-1];
        setSequenceInCliqueEntry(cliqueEntry_[numberEntries],iColumn);
        setOneFixesInCliqueEntry(cliqueEntry_[numberEntries],false);
        numberEntries++;
        // zero counts
        oneFixStart_[iColumn]=0;
        zeroFixStart_[iColumn]=0;
      }
      } else {
      for (i=0;i<numberP1;i++) {
        // 0 is strong branch
        int iColumn = which[i];
        setSequenceInCliqueEntry(cliqueEntry_[numberEntries],iColumn);
        setOneFixesInCliqueEntry(cliqueEntry_[numberEntries],false);
        numberEntries++;
        // zero counts
        oneFixStart_[iColumn]=0;
        zeroFixStart_[iColumn]=0;
      }
      for (i=0;i<numberM1;i++) {
        // 1 is strong branch
        int iColumn = which[numberIntegers-i-1];
        setSequenceInCliqueEntry(cliqueEntry_[numberEntries],iColumn);
        setOneFixesInCliqueEntry(cliqueEntry_[numberEntries],true);
        numberEntries++;
        // zero counts
        oneFixStart_[iColumn]=0;
        zeroFixStart_[iColumn]=0;
      }
      }
      numberCliques_++;
      cliqueStart_[numberCliques_]=numberEntries;
    }
    // Now do column lists
    // First do counts
    for (iClique=0;iClique<numberCliques_;iClique++) {
      for (int j=cliqueStart_[iClique];j<cliqueStart_[iClique+1];j++) {
      int iColumn = sequenceInCliqueEntry(cliqueEntry_[j]);
      if (oneFixesInCliqueEntry(cliqueEntry_[j]))
        oneFixStart_[iColumn]++;
      else
        zeroFixStart_[iColumn]++;
      }
    }
    // now get starts and use which and end as counters
    numberEntries=0;
    for (int iColumn=0;iColumn<numberColumns_;iColumn++) {
      if (oneFixStart_[iColumn]>=0) {
      int n1=oneFixStart_[iColumn];
      int n2=zeroFixStart_[iColumn];
      oneFixStart_[iColumn]=numberEntries;
      which[iColumn]=numberEntries;
      numberEntries += n1;
      zeroFixStart_[iColumn]=numberEntries;
      endFixStart_[iColumn]=numberEntries;
      numberEntries += n2;
      }
    }
    // now put in
    for (iClique=0;iClique<numberCliques_;iClique++) {
      for (int j=cliqueStart_[iClique];j<cliqueStart_[iClique+1];j++) {
      int iColumn = sequenceInCliqueEntry(cliqueEntry_[j]);
      if (oneFixesInCliqueEntry(cliqueEntry_[j])) {
        int put = which[iColumn];
        which[iColumn]++;
        whichClique_[put]=iClique;
      } else {
        int put = endFixStart_[iColumn];
        endFixStart_[iColumn]++;
        whichClique_[put]=iClique;
      }
      }
    }
  }
  delete [] which;
  delete [] whichRow;
  delete [] lookup;
  return numberCliques_;
}
// Delete all clique information
void 
04134 CglKnapsackCover::deleteCliques()
{
  delete [] cliqueType_;
  delete [] cliqueStart_;
  delete [] cliqueEntry_;
  delete [] oneFixStart_;
  delete [] zeroFixStart_;
  delete [] endFixStart_;
  delete [] whichClique_;
  cliqueType_=NULL;
  cliqueStart_=NULL;
  cliqueEntry_=NULL;
  oneFixStart_=NULL;
  zeroFixStart_=NULL;
  endFixStart_=NULL;
  whichClique_=NULL;
  numberCliques_=0;
}

Generated by  Doxygen 1.6.0   Back to index